Биологические основы старения и долголетия
Шрифт:
В нескольких лабораториях, в частности в лаборатории Е. С. Северина (Институт молекулярной биологии АН СССР) сделан ряд открытий о ключевой роли протеинкиназ (протеинфосфотрансфераз) в регуляции метаболизма клетки и различных ее функций. Эти ферменты, как видно из их названия, катализирующие процесс фосфорилирования белков, разделяют на два класса: зависимые от циклической аденозинмонофосфорной кислоты (цАМФ) и не зависимые от нее. По данным последних лет, в печени стареющих крыс (исследован возраст до 30 месяцев) активность обоих ферментов понижается. Изменяется даже структура этих ферментов. Так, молекулярная масса казеинкиназы печени 30-месячных крыс больше, чем печени крыс в возрасте 18 месяцев и менее.
Белки всех организмов построены лишь из одной формы аминокислот — L-формы. Однако это твердо установленное правило в процессе старения нарушается.
Синтез различных классов РНК может нарушаться потому, что повреждаются соответствующие матрицы — ДНК. Это особенно относится к тем участкам ДНК, которые служат матрицей для синтеза рРНК. Процесс повреждения таких матриц столь интенсивен, что удалось обнаружить даже уменьшение содержания в клетках головного мозга и сердца старых животных генов, кодирующих рРНК. Такое уменьшение, очевидно, является одной из важных причин снижения при старении способности клетки увеличивать интенсивность синтеза белка в условиях, когда требуется повысить функциональную активность. А это, в свою очередь, является одной из причин снижения "запаса прочности" различных функций у старых организмов (см. предыдущую главу).
Общей для всех стареющих клеток причиной снижения способности к синтезу РНК является повреждение ДНК и образование между нею и ядерными белками прочных комплексов или даже соединений. Этот молекулярный процесс, который мы называем старческой, или инволюционной, репрессией генома (чтобы отличить его от репрессии генома, происходящей при дифференцировке клеток), оказывается, очевидно, центральным событием в старении по крайней мере неделящихся клеток. Нарушение их функций и гибель, в свою очередь, являются определяющими в старении всего организма.
Выше мы рассмотрели подробно только один, хотя и существенный фактор повреждения ДНК в клетке — тепло. Но в процессе метаболизма образуются такие вещества, как кислородные радикалы, перекись водорода, перекиси липидов, формальдегид и целый ряд других веществ, которые активно реагируют с ДНК и тем самым разрушают ее. Кроме того, в клетке (и, как правило, в ее ядре) присутствует фермент дезоксирибонуклеаза, катализирующий деградацию ДНК.
Даже жизненно необходимые молекулы кислорода — потенциальный источник повреждения ДНК. Остановимся подробнее на характеристике кислородзависящего процесса повреждения генома.
Прежде всего уточним термин "кислородзависящее повреждение". Для этого вспомним, что окисление органических молекул кислородом в клетках происходит путем катализируемого ферментами переноса электронов (отрываемых от окисляемых молекул) на молекулу О2. Для полного восстановления молекулы О2 до 2Н2О необходимо присоединение к О2 4 электронов, так как каждый атом кислорода может присоединить 2 электрона. Однако ферменты переносят электроны на молекулы кислорода по одному. Поэтому в процессе биологического окисления образуются и полувосстановленные формы кислорода, обладающие большой реакционной способностью. Некоторые из таких молекул могут "ускользать" от ферментов, осуществляющих полное восстановление О2.
Простейшая из таких форм — молекула кислорода, присоединившая 1 электрон и поэтому находящаяся в свободно-радикальном состоянии. Такой анион-радикал называют супероксидным радикалом и обозначают
Известны и другие окислительные реакции (например, аутоокисление
Вырабатывая большие количества
Но в процессе реакции, катализируемой ею,
образуются молекулы перекиси водорода и кислород в синглетном состоянии — также очень активная форма кислорода. Кроме того, в реакции между
Все активные формы кислорода:
Такое предположение автором этой книги было сделано в 1970 году в другой книге "Молекулярные механизмы старения". Я вспоминаю об этом, потому что гипотезы относительно образования активных форм кислорода и их биологической роли были сформулированы на основании анализа молекулярных механизмов старения. И с начала же 70-х годов количество исследований биологической роли активных форм кислорода стало резко возрастать прежде всего в связи с открытием суперокисиддисмутазы. Существование такого фермента было ясным указанием на то, что супероксидные радикалы образуются в клетке, а их устранение с помощью этого фермента — один из внутриклеточных защитных механизмов.
К заключению о том, что радикал ОН· имеет биологическое значение, мы пришли также на основании анализа молекулярных механизмов летального действия на клетки ионизирующих излучений. Такой анализ показал, что около 50 % "летальных радиационных ударов" обусловлено реакциями, инициируемыми ОН·. Но из данных радиобиологии также следовало, что летальный удар — это повреждение ДНК клетки. Таким образом, исходя из обоих заключений можно было вывести, что по крайней мере радикалы ОН·, индуцируемые излучением, поражают ДНК клетки. Наверное, и образуемые в процессе нормального метаболизма ОН· также представляют для генома реальную опасность. Правда, уж раз мы вспомнили о механизмах радиационного поражения и роли в этих механизмах ОН·, то отметим и то, что эта роль проявляется также и через реакции переокисления липидов с участием ОН·. Но перекиси липидов также повреждают генетический аппарат, и поскольку это один из основных потенциальных эндогенных генотоксических факторов, то по изменению с возрастом содержания их в тканях и сыворотке крови можно судить об изменении степени, так сказать, внутренней угрозы ДНК — при старении. Концентрацию перекисей липидов можно определить довольно простым методом — по реакции с тиобарбитуровой кислотой.