Биология
Шрифт:
Третичная и четвертичная структура являются дальнейшим развитием белковой молекулы, которая усложняет пространственную укладку путем различного вида скручиваний. На уровнях третичной и четвертичной структур белки приобретают биологическую активность. Утрата белковой молекулой своей структурной организации называется денатурацией (происходит при изменении температуры, обезвоживании и пр.), а восстановление – ренатурацией. Главное условие полной ренатурации – сохранение первичной структуры белка.
Белки могут быть простыми и сложными. Простые белки состоят только из аминокислот, сложные белки имеют в своем
Функции белков в клетке
По разнообразию и значимости белки стоят на первом месте среди всех органических соединений. Им свойственны следующие функции:
1. Структурная – участие в строительстве клеточных мембран, хромосом, рибосом и других компонентов клетки.
2. Каталитическая. Белки-ферменты являются ускорителями внутриклеточных химических реакций, определяют их специфичность. Все известные ферменты делятся на две группы: простые (однокомпонентные), сложные (двухкомпонентные). Простые ферменты включают только белковую часть – апофермент. Сложные ферменты содержат белковую и небелковую части. Если небелковая часть легко отделяется и связывается с другими ферментами, ее называют коферментом. Ферменты могут иметь один или два активных центра. При наличии одного активного центра он связывается только с субстратом – веществом, на которое действует. В случаях двух активных центров один связывается с субстратом, другой с продуктом реакции. Все ферменты характеризуются специфичностью действия и саморегуляцией.
3. Энергетическая: при полном расщеплении 1г белка освобождается 17,6 кДж.
4. Сигнальная – белки, встроенные в поверхностные слои плазмалеммы (антигены), являются своеобразными «мишенями» для многих биологически активных веществ (гормоны).
5. Защитная – связанная с особой группой иммуноглобулинов, определяющих гуморальный иммунитет организма, кроме того многие белки образуют защитные покровы в виде чешуи, ногтей, копыт, волос и т. д.
6. Транспортная – с белками связан перенос ряда гормонов, а также кислорода (гемоглобин).
7. Двигательная – осуществляется сократительными (контрактильными) белками, с помощью которых происходит движение различных клеточных фибрилл (колебание жгутиков сперматозоидов, движение ресничек на поверхности клеток и др.)
Углеводы. Группа сложных органических соединений, в состав которых входят только атомы углерода, кислорода, водорода, азот отсутствует. Поскольку число атомов водорода в них в два раза превышает количество атомов кислорода, эти вещества названы углеводами.
Углеводы бывают простыми и сложными. Простые углеводы называют моносахаридами (мономеры). Сложные углеводы образованы несколькими мономерами и носят название полисахариды. Например, широко распространенные полисахариды крахмал, целлюлоза, гликоген в качестве мономера имеют глюкозу. Молекула целлюлозы образована цепочкой из нескольких сотен молекул глюкозы. Общая формула углеводов Сn (Н20) m. В зависимости от числа атомов углерода в молекуле моносахарида выделяют
Функции углеводов. Главная роль углеводов – энергетическая. При окислении 1 г углеводов выделяется 17,6 кДж. Углеводы выполняют также структурную роль, входя в состав плазмалемм клеток (гликокаликс) и клеточных оболочек (целлюлоза).
Липиды представляют органические вещества нерастворимые в воде, но хорошо растворимые в эфире, бензине, ацетоне и др. Сами липиды могут являться растворителем для некоторых веществ, например, витаминов А, Е. По химическому составу липиды разнообразны и включают жирные кислоты, аминоспирты, аминокислоты, фосфорную кислоту. Между этими соединениями образуются различные виды химических связей. Все липиды делят на две большие группы: нейтральные жиры и фосфолипиды. Нейтральные липиды являются производными высших жирных кислот и трехатомного спирта глицерина. Обычно количество липидов в клетках невелико, всего 1,0—1,3%, но в некоторых специализированных клетках они составляют основную массу цитоплазмы (жировые клетки, отдельные виды яйцеклеток).
Главные функции липидов: структурная и энергетическая. Липиды входят в состав клеточных мембран (фосфолипиды). При расщеплении 1 г липидов выделяется 38,9 кДж энергии.
Строение остальных органических соединений клетки – нуклеиновых кислот, АТФ освещено в соответствующих главах.
Структурная организация клетки
Основными структурными компонентами клетки являются клеточные мембраны, ядро, цитоплазма с цитоскелетом, органеллы и включения.
І. Клеточная мембрана или плазмалемма представляет собой тонкую биологическую пленку, ограничивающую клетку. Она обеспечивает разделение двух фаз: внеклеточной со случайным набором ионов и молекул и внутриклеточной со строго упорядоченным их составом. Для поддержания таких концентрационных градиентов мембрана должна удовлетворять одному абсолютному требованию – необходима ее полная замкнутость. Поэтому все известные биологические мембраны образуют замкнутые пространства — компартменты. Другое важное свойство плазмалеммы – асcимметричность: ее внутренняя и наружная поверхность должны функционировать по-разному. В противном случае молекулы и ионы, вносимые в одном месте, будут столь же быстро выноситься в другом. Таким образом, главная функция клеточной мембраны – обеспечить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточный гомеостаз.
Основу плазмалеммы составляет двойной слой липидов, расположенных перпендикулярно поверхности. Липиды представлены фосфолипидами и холестеролом. Именно они обеспечивают структурную целостность мембраны. Оба вида липидов амфипатические: один конец молекулы – «головка» – полярный гидрофильный, другой конец – «двойной хвост» – неполярный гидрофобный. Если гидрофильную головку отделить от молекулы, она растворится в воде. Гидрофобный хвост, подобно растительному маслу, в воде не растворим. Гидрофильные головки липидов обращены кнаружи, а гидрофобные концы спрятаны вовнутрь (рис. 4).