Битва за скорость. Великая война авиамоторов
Шрифт:
Первой самостоятельной модификацией швецовского КБ следует считать мотор М-62 (разработка 1937 г.) мощностью 1000 л.с., который вышел на мировой уровень по параметрам и успешно применялся на массовом истребителе И-153. Удача разработки этого мотора свидетельствовала, что КБ состоялось. Одновременно велись самостоятельные конструкторские разработки двухрядных звезд: вначале 18-цилиндрового М-25Д, позже получившего обозначение М-70, а затем 14-цилиндрового М-80. Диаметр (155,5 мм) и ход поршня (174,5 мм) оставались неизменными с «Циклона». Читатель должен обратить внимание на точность указания номинальных размеров (до 0,5 мм), а это говорит, что допуск на изготовление должен быть на порядок меньше (50 микрон), а мерительный инструмент — еще более точным.
Двухрядные звезды — это уже качественно другой уровень квалификации конструирования. При их создании возникают сложные проблемы, которые приходится решать самостоятельно. И здесь при создании мотора мы сталкиваемся еще с одной фундаментальной проблемой: любой дефект, поломка имеет системный характер, т. е. для понимания отрицательного «результата»
Вот один из примеров. С форсированием по мощности мотора-прототипа М-25 начала проявляться тряска мотора, т. е. его корпуса, которая передавалась через подвеску и на самолет. Чем больше увеличивалась мощность мотора, тем сильнее была тряска. Происходила разбалансировка сил инерции, в результате чего возникали сильные динамические нагрузки на опоры ротора. Но где причина? При анализе оказалось, что при расчете уравновешивания сил инерции форсированного мотора, кроме массы вращающихся деталей, необходимо учитывать и присоединенную массу масла в полостях шатунных шеек [10].
Какие дефекты были присущи звездообразным моторам воздушного охлаждения? Из их краткого описания и методов их устранения можно понять и сложность создания мотора. Малая плотность воздуха (в сравнении с водой) создавала проблему съема тепла и тем самым охлаждения цилиндров. Перегрев цилиндров и клапанов сопровождал всю историю моторов воздушного охлаждения. Эта проблема существенно усугублялась при постановке второго ряда звезды вслед за первым рядом, затеняющим этот второй ряд. Тот, кто видел эти моторы, наверняка заметил сложнейшую развитую систему ребер охлаждения цилиндров, которые увеличением площади теплоотдачи компенсировали малую плотность воздуха. Нужны сотни часов продувок десятков вариантов расположения ребер с измерением полей температуры, чтобы решить проблему (и то без гарантии). Например, для улучшения охлаждения был применен поворот головки цилиндра на 15° по отношению к вектору скорости набегающего воздуха. Это, в свою очередь, потребовало изменения кинематики классического клапанного механизма. Потребовалось разработать новые законы движения звеньев (рычагов, толкателей, тяг и др.) и профилей кулачков. Как мы увидим ниже, диаметр цилиндров авиамоторов более 160 мм не применялся именно из-за проблемы их перегрева. Количество выделяемого тепла в объеме цилиндра пропорционально кубу линейного размера, а съем тепла — только квадрату размера (площади). Этот «закон куба-квадрата», ограничивающий конструкторов, действует во многих технических системах. Учитывая многорежимность работы мотора и множество сочетаний высоты, скорости полета самолета, а также климатических условий эксплуатации (зима, лето), «настроить» пассивную систему охлаждения цилиндров для любого сочетания условий чрезвычайно сложно.
Вторым серьезным дефектом звездообразных моторов явилась их склонность к заклиниванию втулки подшипника, так называемого главного шатуна (в «звезде» все шатуны, кроме главного, являются прицепными к последнему, а все усилие на коленчатый вал передается через главный шатун). Очевидно, что с увеличением мощности эта проблема также усугублялась. Одно время казалось, что она вообще не имеет решения и ставит предел развиваемой мощности. В 1940 г. в КБ Швецова пригласили из ЦИАМ специалиста по подшипникам скольжения С. Н. Куцаева. Далее мы даем слово участнику этих событий инженеру КБ В. В. Даровских: «Изучив характер износа втулки главного шатуна и шатунной шейки коленчатого вала, он предложил образующую втулки выполнить по гиперболе с мнимой осью вдоль оси шатунной шейки с переменным подлине подшипника зазором, увеличивающимся от середины к краям. Однако первые испытания не показали улучшения работы. Анализ показал, что увеличенные зазоры у концов втулки приводили к вытеканию масла из подшипника. Для обеспечения нормального маслоснабжения были поставлены боковые кольца с отверстиями и пружинами, а от проворота втулка была зафиксирована шлицами. Кроме того, было введено многослойное покрытие трущейся поверхности втулки: никель, медь, серебро, индий. Проблема была решена» [10]. В решении проблемы этого конкретного дефекта мы видим и некую общую методологию решения — комплексный подход.
Не менее серьезными проблемами были задир поршней, износ цилиндров и колец, коробление седел клапанов, прогар выхлопного клапана. Решение этих проблем никто подсказать не мог — со всем этим справлялись конструкторы КБ. Простые копиисты стали бы в тупик при любом таком дефекте и запросили бы помощи из-за рубежа. Как вспоминал П. А. Соловьев, ставший преемником А. Д. Швецова в 1953 г.: «Вспоминается такой эпизод. Мы со Швецовым долгое время занимались бесступенчатой передачей для того, чтобы улучшить характеристики самолета, особенно для воздушного боя. Сделана была такая механическая передача: на валу вращается желоб, свернутый в кольцо. Одна половинка на одной стороне, вторая — на другой, а между ними ролик. И в зависимости от положения ролика идет передача с большего на меньшее и наоборот. А поскольку вы можете менять положение ролика бесконечно, то и этих передач получается бесконечно много. Сложные, конечно, устройства, но все-таки работали, на моторе работали. Я помню, как-то вечером поставили на испытания очередную конструкцию и произошла поломка привода, раскололся корпус, редуктор, шестерни
Чем опытный инженер отличается от неопытного при разработке новой принципиально конструкции? Оба, по большому счету, ни черта не знают. Но… опытный инженер не боится, знает, что предстоит доводка (а любой эксперимент — это и вопрос, и ответ, лучше бы, конечно, только ответ), а неопытный — боится. И еще: опытный инженер быстрее учится на своих ошибках.
Идея четырехтактного цикла впервые была предложена французским инженером Альфонсом Бо де Роша (Beau de Rochas) в 1861 г.:
«Поставленная задача имела, очевидно, единственно практически правильным конструктивным решением применение только одного цилиндра, во-первых, для того, чтобы последний имел максимально возможные размеры, во-вторых, чтобы уменьшить до абсолютного минимума сопротивление газов движению. Это, естественно, приводит к осуществлению в одной и той же полости цилиндра в течение четырех последовательных ходов поршня следующих процессов:
1. Всасывание в течение целого хода поршня.
2. Сжатие в течение следующего хода.
3. Воспламенение в мертвой точке и расширение в течение третьего хода.
4. Выталкивание сгоревших газов из цилиндра на четвертом и последнем ходе» ( Beau de Rochas «Nouvelles recherches», p. 30. Цит. по Гюльднер, с. 730).
Однако приоритет реализации этого цикла принадлежит немецкому инженеру Николаусу Отто. Модификацию этого цикла разработал его соотечественник Рудольф Дизель. Промышленное производство поршневых двигателей внутреннего сгорания организовали тоже немцы — Карл Бенц и Готтлиб Даймлер. Даймлер и запатентовал V-образную схему расположения цилиндров мотора. Революционным было и изобретение Робертом Бошем искровой системы зажигания током высокого напряжения от магнето в конце 1880-х гг. Только появление таких эффективных (большой удельной — на единицу массы — мощности) двигателей внутреннего сгорания позволило создать возможность рождения таких аппаратов тяжелее воздуха, как самолет и вертолет. Это произошло в конце XIX века. Доминирование эры воздухоплавания (аппараты легче воздуха) и тяжелых двигателей внешнего сгорания (паровых машин) закончилось. Попытки продлить жизнь коммерческому и военному воздухоплаванию с помощью дирижаблей продолжались до аварии (пожара) пассажирского «водородного» «Гинденбурга» в Нью-Йорке в мае 1937 г. при швартовке после перелета через Атлантику.
В отличие от летящего самолета, имеющего внешние, хорошо видные обтекаемые «красивые» аэродинамические формы, «красоту» двигателя внутреннего сгорания трудно увидеть. Требуется интеллектуальное усилие, чтобы в этом нагромождении «железа» распознать чудо инженерной мысли. Все самое интересное в авиамоторе происходит внутри.
Как известно, первый в мире установившийся управляемый полет самолета-биплана «Флайер» («Летающий») конструкции братьев Райт с мотором Тэйлора мощностью 12 л.с. и массой около 80 кг (удельная мощность — 0,15 л с./кг) состоялся 17 декабря 1903 г. С выбором мотора для первого в мире самолета была проблема: ни один из существовавших тогда автомобильных моторов не обеспечивал необходимой для самолета удельной (на 1 кг массы) мощности. Больше, чем 0,06, автомобильные моторы того времени не имели, а нужно было по крайней мере 0,125. Требуемое соотношение было достигнуто инновационным для того времени применением алюминиевого литья для корпуса. Мотор для «Флайера» был четырехцилиндровый, с горизонтальным расположением цилиндров жидкостного охлаждения. Диаметр цилиндра и ход поршня DxS составляли 102*102 мм («квадрат»). Два пропеллера приводились цепной передачей. Вообще-то надо было исхитриться, чтобы полететь. Братья Райт в первую очередь были специалистами по аэродинамике, в том числе и по аэродинамике пропеллера. Именно благодаря разработанному ими очень эффективному пропеллеру, т. е. преобразователю мощности мотора в силу тяги, удалось максимально использовать весьма ограниченную мощность мотора. Вообще, при изучении истории авиамоторов нельзя забывать о движителях — пропеллерах — воздушных винтах. Их история не менее интересна, а сами винты развиваются до сих пор. И это неслучайно: для дозвукового экономичного полета винт является идеальным движителем. Сегодня снова стоит задача разработки эффективных многолопастных винтов с низким уровнем шума для перспективных магистральных самолетов.
«Фишкой» же пропеллера Уилбура Райта была примененная им стреловидность лопасти в концевых сечениях, так называемый «end bent» («отогнутый конец»), уменьшающий так называемую статическую дивергенцию винта, т. е. раскрутку под влиянием аэродинамических сил.
Братья Райт «обхитрили» профессора Самюэля Лэнгли, тоже готовившего полет своего самолета «Аэродром» с мотором Мэнли — Бальтцера мощностью 52 л.с. в 1903 г. Мощности 12 л.с. не хватало, чтобы разогнаться «Флайеру» до скорости отрыва 45 км/час по дорожке длиной 20 м, и братья Райт «нашли» место в Северной Каролине с постоянно дующим встречным ветром 30 км/час для взлета. Мотор конструкции Мэнли имел существенно лучшую (более, чем в 3 раза) удельную мощность в сравнении с мотором Тэйлора, но Лэнгли не повезло. Его «Аэродром» поднял в воздух Гленн Кёртис только в 1913 г., когда Лэнгли уже не было на этом свете. Отношение мощности мотора к его массе в результате технического прогресса эволюционировало от 0,55 л.с./кг (мотор Мэнли — Бальтцера) до 2,2 л.с./кг (Кертис — Райт R-3350).