Блеск и нищета К.Э. Циолковского
Шрифт:
На аэроплане предполагалось разместить бензиновые двигатели внутреннего сгорания, охлаждаемые воздухом. Он знал, что этот способ охлаждения уже применялся на практике. В примечаниях к работе [157] отмечалось, что предложение о применении на самолетах таких двигателей надолго опережает начало фактического их применения [157] [с. 263-264].
Естественно, нашлись и такие «исследователи», которые «осветили» этот намек, прямо указав на приоритет К.Э. Циолковского в предложении об использовании таких двигателей на самолетах. Впрочем, в работе [109] [с. 4] он и сам стал претендовать на этот приоритет (почему
Корпус должен был быть полностью закрытым. Его форма выбиралась, видимо, в соответствии с представлениями К.Э. Циолковского о форме дирижабля, которые были им получены в ходе изучения сопротивления воздуха.
К.Э. Циолковский написал: «Мы видим еще колеса выдвигающиеся внизу корпуса» [88] [с. 43]. На основе этой фразы некоторые авторы сделали вывод о том, что он предложил идею убирающегося шасси. Однако это не так, поскольку в работе [109] было дано разъяснение: «…6) чуть выдающиеся из корпуса колеса (еще не осуществлено, но шасси делается все ниже и ниже)» [109] [с. 4].
Весь аэроплан должен был изготавливаться из металла (стали, алюминия), но при этом с «уменьшенной плотностью крыльев, которая должна уменьшаться пропорционально увеличению веса снаряда» [88] [с. 28].
Это предложение его не совсем понятно, но представляется достаточно устойчивым, активно обсуждавшимся в этой работе. Он писал: «Не входя в технические подробности, …берем их (т.е. сплавы – Г.С.) для наших крыльев и оставляем за собою способность уменьшать среднюю плотность произвольно, причем допустить, что прочностное сопротивление разрыву вещества уменьшается пропорционально уменьшению плотности» [88] [с. 20].
И далее: «Уменьшение плотности на практике достигают только чрезвычайно искусным построением «рыхлой массы»… Незначительное изменение плотности, конечно, не хитрость, но нелегко разрядить вещество в 100-1000 раз» [88] [с. 20].
Поскольку с увеличением размеров его аэроплана из соображений механического подобия относительная масса крыльев, как он считал, будет все больше возрастать, то средняя плотность крыльев должна уменьшаться пропорционально весу снаряда и в пределе они могут превратиться «в комообразные плохо действующие и невозможные на практике массы» [82] [с. 22-23, пп. N 46, 48].
Он считал, что размеры аэропланов ограничены из-за этих двух противоречивых процессов: с одной стороны, увеличения массы крыльев, а значит, и требований
К.Э. Циолковский попытался провести и расчет этого аэроплана. Он исходил из предположения о том, что работа двигателя должна давать два слагаемых силы тяги: f1 – равная его весу, и f2 – равная аэродинамическому сопротивлению.
Автор работы [29], с присущей ему добротой, приписал К.Э. Циолковскому авторство в утверждении о том, что «давление на крылья встречного воздуха пропорционально синусу угла отклонения их от направления воздушного потока» [29] [с. 35]. Однако это – недоразумение, поскольку сам К.Э. Циолковский писал о том, что этот закон был открыт до него и многократно подтвержден эмпирически Дачмином (1842 г.), Отто Лилиенталем (1889 г.), Марэем (1890 г) и выведен теоретически лордом Райлеем (1876 г).
Любопытно, что в своих рассуждениях он получил формулу, которую более, чем полвека спустя, вывел В.Ф. Болховитинов, назвав ее уравнением существования самолетов.
К.Э. Циолковский обратил внимание на то, что масса самолета Р равна массе отдельных его систем, т.е. двигателя (Рдв), корпуса (Рк), полезной нагрузки (Рн) и т.д. Тогда можно написать, что Р = Рдв + Рк + Рн …
Если обе части разделить на Р, то получим это уравнение существования:
Мы не понимаем, почему эта формула после публикации книги В.Ф. Болховитинова привлекла к себе большое внимание. Во-первых, она тривиальна, а, во-вторых, ею автоматически пользовался и пользуется каждый конструктор в своей работе, хотя, быть может, и на стихийной основе. Вообще, одна из задач конструктора как раз и состоит в учете различного рода балансов. Например, для космических аппаратов можно составить энергетическое уравнение существования: U = Ui
где: U – располагаемая мощность солнечных батарей или аккумуляторов, а в правой части стоит сумма величин энергии, потребляемой различными системами.
Аналогичные уравнения можно составить и для надежности, и для габаритов, и для стоимости.
Вернемся, однако, к расчету самолета К.Э. Циолковского и отметим, что приведенная им формула, касающаяся подъемной силы («нормальная к крылу сила давления встречного воздуха»), была в принципе неверной, поскольку была взята из уже рассмотренной нами работы [101]. Дальнейшее рассмотрение методики этого расчета теряет смысл и мы этим заниматься не будем. Отметим только, что эта формула по нашим оценкам давала значительное превышение величины подъемной силы. В самом деле, расчетная нагрузка на мощность двигателя оказалась у него равной 4,5 кг/л.с. в то время, как у других исследователей эта цифра достигала 28 кг/л.с.
Это было время, заключенное, с одной стороны, созданием самолета А.Ф. Можайским и, с другой стороны, первым полетом братьев Райт в 1903 году. Этот период был наполнен творческим поиском изобретателей различных стран. С 1890 по 1897 год французский инженер К. Адер создал три самолета «Авион», пытаясь осуществить на них пилотируемый полет; в 1894 году самолет английского инженера Х. Максима при испытаниях потерпел аварию. В Германии вел серьезные подготовительные работы по проектированию самолетов инженер О. Лилиенталь, который с 1891 года совершал регулярные полеты на планерах собственной конструкции. В 1896 году начал аналогичные эксперименты с планерами американский профессор О. Шанют.