Большая Советская Энциклопедия (БЕ)
Шрифт:
Соч.: Opera omnia, v. 1—4, Lausannae— Genevae, 1742; в рус. пер.— Избр. соч. по механике, М.—Л., 1937.
Даниил Б. (29.1.1700, Гронинген, — 17.3.1782, Базель), сын Иоганна Б. Занимался физиологией и медициной, но больше всего математикой и механикой. В 1725—33 он работал в Петербургской АН сначала на кафедре физиологии, а затем механики. Впоследствии он состоял почётным членом Петербургской АН, опубликовал (с 1728—78) в её изданиях 47 работ. Профессор в Базеле по физиологии (1733) и по механике (1750). В математике Даниилу Б. принадлежат: метод численного решения алгебраических уравнений с помощью возвратных рядов, работы по обыкновенным дифференциальным уравнениям, по теории вероятностей с приложением к статистике народонаселения и, отчасти, к астрономии, по теории рядов. В работах, завершенных написанным в Петербурге трудом «Гидродинамика» (1738), вывел основное уравнение стационарного движения идеальной жидкости, носящее его имя (см. Бернулли уравнение гидродинамики). Даниил Б. разрабатывал
Соч.: Hydrodynamica sive de viribus et motibus fluidorum commentarii, Argentoratoe, 1738.
Лит.: Райнов Т. И., Даниил Бернулли и его работа в Петербургской академии наук, «Вестник АН СССР», 1938, № 7—8.
Из др. членов семьи Б. могут быть названы: Николай Б. (1687—1759), племянник Якоба и Иоганна, профессор математики в Падуе и Базеле; Николай Б. (1695—1726), сын Иоганна, профессор математики в Петербургской АН; Якоб Б. (1759—89), племянник Даниила, член Петербургской АН, автор ценных трудов по механике.
И. Бернулли.
Д. Бернулли.
Якоб Бернулли.
Бернулли схема
Бернулли схема (названа по имени Я. Бернулли ), одна из основных математических моделей для описания независимых повторений опытов, используемых в вероятностей теории . Б. с. предполагает, что имеется некоторый опыт S и связанное с ним случайное событие А (типичный пример: S — бросание монеты, А — выпадение герба). Производят n независимых повторений S. При каждом осуществлении S событие А может наступить (как говорят, успех) с вероятностью р (в предложенном примере, р=1 /2 ) и не наступить (неудача) с вероятностью g = 1—p. Таким образом, Б. с. определяется двумя параметрами: n и p). Вероятности того или иного числа успехов даёт биномиальное распределение . На примере Б. с. были открыты важнейшие закономерности теории вероятностей (например, закон больших чисел, см. Бернулли теорема ). Замена условия независимости опытов в Б. с. условием зависимости каждого опыта только от непосредственно предшествующего приводит к др. важнейшей модели теории вероятностей — цепям Маркова (см. Маркова цепь ).
Ю. В. Прохоров.
Бернулли теорема
Берну'лли теоре'ма, одна из важнейших теорем теории вероятностей; является простейшим случаем т. н. закона больших чисел (см. Больших чисел закон ). Б. т. была впервые опубликована в труде Я. Бернулли «Искусство предположений», изданном в 1713. Первые доказательства Б. т. требовали сложных математических средств, лишь в середине 19 в. П. Л. Чебышев нашёл необычайно изящное и краткое её доказательство. Точная формулировка Б. т. такова: если при каждом из n независимых испытаний вероятность некоторого события равна р, то вероятность того, что частота m/n появления события удовлетворяет неравенству |m/n - p| < e (e — произвольно малое положительное число), становится сколь угодно близкой к единице при достаточно большом числе n испытаний. Из доказательства Чебышева вытекает простая количественная оценка этой вероятности:
В. И. Битюцков.
Бернулли уравнение (гидродинамики)
Берну'лли уравне'ние, основное уравнение гидродинамики , связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Б. у. было выведено Д. Бернулли в 1738 для струйки идеальной несжимаемой жидкости постоянной плотности r, находящейся под действием только сил тяжести. В этом случае Б. у. имеет вид:
v2 / 2 + pl r + gh = const,
где g — ускорение силы тяжести.
Из Б. у. вытекает ряд важных следствий. Например, при истечении жидкости из открытого сосуда под действием силы тяжести (рис. 1 ) из Б. у. следует:
v2 /2g = h или
т. е. скорость жидкости в выходном отверстии такова же, как при свободном падении частиц жидкости с высоты h.
Если равномерный поток жидкости, скорость которого v и давление p, встречает на своём пути препятствие (рис. 2 ), то непосредственно перед препятствием происходит подпор — замедление потока; в центре области подпора, в критической точке, скорость потока равна нулю. Из Б. у. следует, что давление в критической точке p1 = p + rv2 /2. Приращение давления в этой точке, равное p1– p = rv2 /2, называется динамическим давлением, или скоростным напором. В струйке реальной жидкости её механическая энергия не сохраняется вдоль потока, а расходуется на работу сил трения и рассеивается в виде тепловой энергии, поэтому при применении Б. у. к реальной жидкости необходимо учитывать потери на сопротивление.
Б. у. имеет большое значение в гидравлике и технической гидродинамике: оно используется при расчётах трубопроводов, насосов, при решении вопросов, связанных с фильтрацией, и т.д. Бернулли уравнение для среды с переменной плотностью р вместе с уравнением неизменяемости массы и уравнением состояния является основой газовой динамики .
Лит.: Фабрикант Н.Я., Аэродинамика, ч. 1—2, Л.,1949— 64; Угинчус А. А., Гидравлика, гидравлические машины и основы сельскохозяйственного водоснабжения, К.—М., 1957, гл. V.
Рис. 1. Истечение из открытого сосуда.
Рис. 2. Обтекание препятствия.
Бернулли уравнение (дифференциальное)
Берну'лли уравне'ние, дифференциальное уравнение 1-го порядка вида:
dy/dx + Py = Qya,
где Р, Q — заданные непрерывные функции от x ; a — постоянное число. Введением новой функции z = y– -a+1 Б. у. сводится к линейному дифференциальному уравнению относительно z. Б. у. было рассмотрено Я. Бернулли в 1695, метод решения опубликован И. Бернулли в 1697.
Бернулли числа
Берну'лли чи'сла, специальная последовательность рациональных чисел, фигурирующая в различных вопросах математического анализа и теории чисел. Значения первых шести Б. ч.:
B1 = 1 /6 , B2 = 1 /30 , B3 = 1 /42 , B4 = 1 /30 ,
B5 = 5 /66 , B6 = 691 /2730 .