Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ЧИ)
Шрифт:

Численное решение алгебраических уравнений разбивается на следующие этапы: 1) выделение кратных корней, сводящее задачу к решению уравнения с простыми корнями; 2) определение границ, между которыми могут лежать корни уравнения; 3) разделение корней, т. е. указание промежутков, каждый из которых содержит не более одного простого корня (см. Штурма правило ); 4) грубое определение приближённого значения корня, выполняемое графически или каким-либо иным способом (например, при помощи изучения перемен знака левой части уравнения); 5) вычисление корня с заданной точностью. Наиболее распространёнными методами для этого являются методы ложного положения, метод Ньютона, Лобачевского метод ,последовательных приближений метод , разложение в ряды и т.д.

При численном решении трансцендентных уравнений ограничиваются этапами 4 и 5. О численном решении дифференциальных уравнений см. в ст. Приближённое решение дифференциальных уравнений.

Лит.: Энциклопедия элементарной математики, кн. 2 — Алгебра, М.—Л., 1951; Курош А.

Г., Курс высшей алгебры, 11 изд., М., 1975.

Численные методы

Чи'сленные ме'тоды в математике, методы приближённого решения математических задач, сводящиеся к выполнению конечного числа элементарных операций над числами. В качестве элементарных операций фигурируют арифметические действия, выполняемые обычно приближённо, а также вспомогательные операции — записи промежуточных результатов, выборки из таблиц и т.п. Числа задаются ограниченным набором цифр в некоторой позиционной системе счисления (десятичной, двоичной и т.п.). Т. о., в Ч. м. числовая прямая заменяется дискретной системой чисел (сеткой); функция непрерывного аргумента заменяется таблицей её значений в сетке (см. Таблицы математические ); операции анализа, действующие над непрерывными функциями, заменяются алгебраическими операциями над значениями функций в сетке. Ч. м. сводят решение математических задач к вычислениям, которые могут быть выполнены как вручную, так и с помощью вычислительных машин. Разработка новых Ч. м. и применение их в ЭВМ привели к возникновению вычислительной математики .

Числитель

Числи'тель дроби m/n , число m , показывающее, из скольких долей 1 /n составлена дробь .

Числительное

Числи'тельное, именная часть речи , общим лексическим значением которой является количество лиц или предметов. Грамматически Ч. характеризуется наличием категории падежа (в языках с развитой морфологией), отчасти рода (в языках, имеющих грамматический род, некоторые Ч. обладают родовыми формами, например в русском языке «два», «две»), отсутствием категории числа . По характеру выражения количественного значения выделяются определённо-количественные Ч. (два, десять и т.п.) и неопределённо-количественные Ч. (много, мало и т.п.). Особую группу образуют собирательные Ч., обозначающие количество как совокупность (двое, трое, пятеро, оба). По структуре различаются простые (два, три, одиннадцать), сложные (пятьдесят, семьдесят) и составные Ч. (тридцать шесть, сто десять). Многие учёные считают прилагательными т. н. порядковые Ч. и слово «один», имеющие различия в числе и синтаксический род. Слова «десяток», «сотня», «тысяча», «миллион» относят к существительным, поскольку они обладают всеми признаками этой части речи. В истории славянских языков некоторые Ч. произошли от других частей речи (например, «пять» — существительное). Ч. следует отличать от других слов с количественным значением.

Лит.: Супрун А. Е., Славянские числительные, Минск, 1969; Виноградов В. В., Русский язык, 2 изд., М., 1972.

В. А. Виноградов.

«Число»

«Число'», государственная налоговая система, введённая в 50-х гг. 13 в. на территориях, подвластных монгольским ханам. «Ч.» сменило откупную систему налогов с завоёванных монголами земель. При великом хане Менгу (1251—59) «Ч.» было введено в Китае, Средней Азии, Иране, Армении, было распространено на русские земли (Северо-Восточная Русь, Рязанское и Муромское княжества, Новгород Великий). Для этого монгольскими чиновниками были проведены переписи населения, которое делилось на десятки, сотни, тысячи и «тьмы» (10 тыс.). Служители церкви из переписи исключались. Лица, проводившие «Ч.», назывались численниками или писцами. Численники переписывали население по домам. Исчисление населения сопровождалось многочисленными злоупотреблениями и вызывало восстания (восстание в Новгороде Великом в 1257). На Руси деление населения по десятичной системе для уплаты налогов или экстраординарных ордынских сборов сохранялось вплоть до 15 в.

Лит.: Насонов А. Н., Монголы и Русь, М.—Л., 1940; Павлов П. Н., К вопросу о русской дани в Золотую Орду, «Уч. зап. Красноярского гос. пед. института», т. 13. Серия историко-филологическая, в. 2, Красноярск. 1958.

Число (в языкознании)

Число' в языкознании, грамматическая категория, обозначающая в предложении количество участников действия (субъектов и объектов ) с помощью морфологических средств. Основным противопоставлением в категории Ч. является единственность — множественность. В некоторых языках имеется также двойственное Ч. и реже тройственное. С развитием языка двойственное Ч. может разрушаться и поглощаться множественными Ч., как это было в истории славянских языков (например в старославянском языке различались единственные, множественные и двойственные Ч.: «ты» — «вы» — «ва»). Среди форм и значений многие Ч. различаются множественное дистрибутивное (когда множество мыслится как состоящее из отдельных предметов, например «листы») и множественное собирательное (когда множество мыслится как единая совокупность, например «листья»). Собирательное значение может выражаться формой единственного Ч. («тряпьё», «вороньё»). Формы множественных Ч. могут также обозначать родовое понятие (родовое множественное Ч.), например «в этой местности водятся волки». Употребление формы множественного

Ч. в значении единственного Ч. наблюдается в случаях вежливого множественного Ч. («вы» при обращении к одному лицу) и множественные Ч. величия («мы» в речи царствующих особ). Как независимая категория Ч. свойственно существительным и личным местоимениям, другие части речи (глагол, прилагательное, прочие разряды местоимений) получают числовые характеристики по согласованию (синтаксическое Ч.). Согласование по числу обязательно в индоевропейских языках : «он работает» — «они работают», англ. he works — they work. Однако с разрушением морфологии согласование также может исчезать, например в английском языке уже нет согласования по Ч. между прилагательным и существительным (clever child — «умный ребёнок» — clever children — «умные дети»). Способы выражения множественных Ч. различны: аффиксальное Ч. («стол» — «столы», англ. table — tables), супплетивное Ч. («человек» — «люди»), см. Супплетивизм ; ломаное Ч. (араб. radzulun — «мужчина», ridzalun — «мужчины»; изменяется огласовка корня); множественное Ч. с повтором (индонез. оранг — «человек», оранг-оранг — «люди»). В индоевропейских языках форма множественного Ч. обязательна, если существительное имеет при себе количественное слово (десять книг, много книг). В некоторых языках существительное в таких конструкциях употребляется в форме единственного Ч. (венг. k"onyv — «книга», tiz k"onyv — «10 книг», sok k"onyv — «много книг»). Во многих языках Азии и Америки для выражения множественного Ч. существительных в конструкции с числительным используются специальные элементы — классификаторы (нумеративы), различные для разных лексических групп существительных; последние при этом своей формы не меняют (вьетнамский яз. hai con meo — «две кошки», где con — классификатор).

Лит.: Сепир Э., Язык, пер. с англ., М.—Л., 1934; Есперсен О., Философия грамматики, пер. с англ., М., 1958; Реформатский А. А., Число и грамматика, сб.: Вопросы грамматики, М.—Л., 1960; Виноградов В. В., Русский язык, 2 изд., М., 1972.

В. А. Виноградов.

Число (матем.)

Число', важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие Ч. изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним расширения круга вопросов, требовавшего количеств. описания и исследования. На первых ступенях развития понятие Ч. определялось потребностями счёта и измерения, возникавшими в непосредственной практической деятельности человека. Затем Ч. становится основным понятием математики, и дальнейшее развитие понятия Ч. определяется потребностями этой науки.

Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального Ч. протекал в общих чертах следующим образом. На низшей ступени первобытного общества понятие отвлечённого Ч. отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как, например, «три человека», «три озера» и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись различные словесные обороты. Слово «три» в контекстах «три человека», «три лодки» передавалось различно. Конечно, такие именованные числовые ряды были очень короткими и завершались неиндивидуализированным понятием («много») о большом количестве тех или других предметов, которое тоже являлось именованным, т. е. выражалось разными словами для предметов разного рода, такими, как «толпа», «стадо», «куча» и т.д.

Источником возникновения понятия отвлечённого Ч. является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона. У большинства народов первым таким эталоном являются пальцы («счёт на пальцах»), что с несомненностью подтверждается языковедческим анализом названий первых чисел. На этой ступени Ч. становится отвлечённым, не зависящим от качества считаемых объектов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности. Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших Ч. стала использоваться новая идея — обозначение некоторого определённого Ч. (у большинства народов — десяти) новым знаком, например зарубкой на другой палочке.

С развитием письменности возможности воспроизведения Ч. значительно расширились. Сначала Ч. стали обозначаться чёрточками на материале, служащем для записи (папирус, глиняные таблички и т.д.). Затем были введены другие знаки для больших Ч. Вавилонские клинописные обозначения Ч., так же, как и сохранившиеся до наших дней «римские цифры», ясно свидетельствуют именно об этом пути формирования обозначений для Ч. Шагом вперёд была индийская позиционная система счисления , позволяющая записать любое натуральное Ч. при помощи десяти знаков — цифр . Т. о., параллельно с развитием письменности понятие натурального Ч. принимает всё более отвлечённую форму, всё более закрепляется отвлечённое от всякой конкретности понятие Ч., воспроизводимого в форме слов в устной речи и в форме обозначения специальными знаками в письменной.

Важным шагом в развитии понятия натурального Ч. является осознание бесконечности натурального ряда Ч., т. е. потенциальной возможности его безграничного продолжения. Отчётливое представление о бесконечности натурального ряда отражено в памятниках античной математики (3 в. до н. э.), в трудах Евклида и Архимеда. В «Началах» Евклида устанавливается даже безграничная продолжаемость ряда простых Ч., в книге Архимеда «Псаммит» — принципы для построения названий и обозначений для сколь угодно больших Ч., в частности бо'льших, чем «число песчинок в мире».

Поделиться:
Популярные книги

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Старая дева

Брэйн Даниэль
2. Ваш выход, маэстро!
Фантастика:
фэнтези
5.00
рейтинг книги
Старая дева

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец

Кадры решают все

Злотников Роман Валерьевич
2. Элита элит
Фантастика:
боевая фантастика
попаданцы
альтернативная история
8.09
рейтинг книги
Кадры решают все

Хозяйка собственного поместья

Шнейдер Наталья
1. Хозяйка
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка собственного поместья

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Хозяйка покинутой усадьбы

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка покинутой усадьбы

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Надуй щеки! Том 6

Вишневский Сергей Викторович
6. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 6

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3