Большая Советская Энциклопедия (ЦИ)
Шрифт:
Ф. В. Лисовский.
Рис. 3. Область устойчивого существования цилиндрических магнитных доменов. По оси ординат отложено отношение напряжённости поля подмагничивания к намагниченности насыщения магнетика, по оси абсцисс - отношение толщины пластины к её характеристической длине.
Рис. 5. Схема генерирования и перемещения цилиндрических магнитных доменов: слева — генератор доменов, Нупр — управляющее магнитное поле. При повороте управляющего поля один из концов зародышевого домена постепенно втягивается в канал распространения, обособляется и под действием
Рис. 2а. Лабиринтная доменная структура магнитоодноосных пластин в отсутствии магнитного поля, наблюдаемая под микроскопом в поляризованном свете (размер доменов ок. 10 мкм).
Рис. 4. Схемы перемещения цилиндрических магнитных доменов (1) на пермаллоевых аппликациях (2) Т—I-oбразного (а), Y—I-oбразного (б) и шевронного (V-oбразного) (в) профилей. Нупр — управляющее магнитное поле.
Рис. 1. Изолированный цилиндрический магнитный домен (1) в пластине магнетика (2) с одной осью лёгкого намагничивания. Н — подмагничивающее поле, направление которого совпадает с осью лёгкого намагничивания, J — намагниченность магнетика (знаки + и - указывают на различие в направлении намагниченности).
Рис. 2,б. Цилиндрические магнитные домены, образовавшиеся при помещении пластины в подмагничивающее поле.
Цилиндрические функции
Цилиндри'ческие фу'нкции, весьма важный с точки зрения приложений в физике и технике класс трансцендентных функций , являющихся решениями дифференциального уравнения:
где n — произвольный параметр. К этому уравнению сводятся многие вопросы равновесия (упругого, теплового, электрического) и колебаний тел цилиндрической формы. Решение, имеющее вид:
[где Г (z ) — гамма-функция ; ряд справа сходится при всех значениях х ], называется Ц. ф. первого рода порядка n. В частности, Ц. ф. нулевого порядка имеет вид:
Если n — целое отрицательное: n = — n, то Jn (x ) определяется так:
J– n (x ) = (— 1) n Jn (x ).
Ц. ф. порядка n = m + 1 /2 , где m — целое число, сводится к элементарным функциям, например:
Функции Jn (x ) и уравнение (1) называют также по имени Ф. Бесселя (Бесселя функции , Бесселя уравнение ). Однако эти функции и уравнение (1) были получены
Если n не является целым числом, то общее решение уравнения (1) имеет вид
y = C1 Jn (x ) + C2 J– n (x ), (2)
где C1 и C2 — постоянные. Если же n — целое, то Jn (x ) и J– n (x) линейно зависимы, и их линейная комбинация (2) уже не является общим решением уравнения (1). Поэтому, наряду с Ц. ф. первого рода, вводят ещё Ц. ф. второго рода (называемые также функциями Вебера):
При помощи этих функций общее решение уравнения (1) может быть записано в виде
у = C1 Jn (x) + C2 Yn (x )
(как при целом, так и при нецелом n).
В приложениях встречается также Ц. ф. мнимого аргумента
и
(функция Макдональда). Эти функции удовлетворяют уравнению
общее решение которого имеет вид
y = C1 ln (x ) + C2 Kn (x )
(как при целом, так и нецелом n). Часто употребляются ещё Ц. ф. третьего рода (или функции Ганкеля)
а также функции Томсона ber (х ) и bei (x ), определяемые соотношением
ber (x ) + i bei (x ) = I (x
Важную роль играют асимптотические выражения Ц. ф. для больших значений аргумента: