Большая Советская Энциклопедия (ДИ)
Шрифт:
Лит.: Молчанов В. И., Дифтерия, 2 изд., М., 1960; Титова А. И. и Флексер С. Я., Дифтерия, М., 1967.
Р. Н. Рылеева, М. Я. Студеникин.
Дифтероиды
Дифтеро'иды, бактерии, обладающие сходством с дифтерийными палочками — возбудителями дифтерии. Различают парадифтерийные и ложнодифтерийные Д., имеющие вид коротких, толстых, неподвижных палочек. Парадифтерийные Д., в отличие от ложнодифтерийных, имеют 1—2 маленьких полярных зерна и не разлагают мочевину.
Дифтонг
Дифто'нг (от греч. d'iphthongos — двугласный), сочетание двух гласных (слогового и неслогового) в одном слоге. Например, французское [oi].
Диффамация
Диффама'ция (от лат. diffamo — порочу), в уголовном праве некоторых буржуазных государств распространение порочащих сведений. В отличие от клеветы, при Д. порочащие сведения могут и не носить клеветнического характера.
Дифферданж
Дифферда'нж (Differdange), город в Люксембурге, в округе Люксембург, близ границы с Францией. 17,8 тыс. жителей (1970). Центр металлургической промышленности; производство химических удобрений. В районе Д. — добыча железной руды (продолжение Лотарингского железорудного бассейна).
Дифферент судна
Диффере'нт су'дна (от лат. differens, родительный падеж differentis — разница), наклон судна в продольной плоскости. Д. с. характеризует посадку судна и измеряется разностью его осадок (углублений) кормой и носом. Если разность равна нулю, говорят, что судно «сидит на ровный киль», при положительной разности — судно сидит с дифферентом на корму, при отрицательной — с дифферентом на нос. Д. с. влияет на поворотливость судна, условия работы гребного винта, проходимость во льдах и пр. Д. с. бывает статический и ходовой, возникающий при больших скоростях движения. Д. с. обычно регулируют приёмом или удалением водяного балласта.
Дифференциал (математич.)
Дифференциа'л (от лат. differentia — разность, различие) в математике, главная линейная часть приращения функции. Если функция y = f (x) одного переменного х имеет при х = х производную, то приращение
Dy = f (x + Dx ) - f (x)
функции f (x) можно представить в виде
Dy = f' (x) Dx + R,
где член R бесконечно мал по сравнению с Dх. Первый член
dy = f' (x) Dх
в этом разложении и называется дифференциалом функции f (x) в точке x . Из этой формулы видно, что дифференциал dy линейно зависит от приращения независимого переменного Dx, а равенство
Dy = dy + R
показывает, в каком смысле Д. dy является главной частью приращения Dy.
Подробнее о Д. функций одного и нескольких переменных
Обобщение понятия дифференциала. Обобщение понятия Д. на вектор-функции, начало которому положили в начале 20 в. французские математики Р. Гато и М. Фреше, позволяет лучше выяснить смысл понятия «дифференциал» для функций нескольких переменных, а в применении к функционалам приводит к понятию вариации, лежащему в основе вариационного исчисления.
Важную роль в этом обобщении играет понятие линейной функции (линейного отображения). Функция L (x) векторного аргумента х называется линейной, если она непрерывна и удовлетворяет равенству
L (x' + х'') = L (x') + L (x'')
для любых х' и х'' из области определения. Линейная функция n– мерного аргумента х = {x1,..., xn} всегда имеет вид
L (x) = a1x1 +... + anxn,
где a1,..., an — постоянные. Приращение
DL = L (x + h) - L (x)
линейной функции L (x) имеет вид
DL = L (h),
т. е. зависит только от векторного приращения h, и притом линейно. Функция f (x) называется дифференцируемой при значении аргумента х, если её приращение Df = f (x + h) - f (x), рассматриваемое как функция от h, имеет главную линейную часть L (h), т. е. выражается в виде
Df = L (h) + R (h),
где остаток R (h) при h ® 0 бесконечно мал по сравнению с h. Главная линейная часть L (h) приращения Df и называется дифференциалом df функции f в точке x. При этом в зависимости от того, в каком смысле понимается бесконечная малость R (h) по сравнению с h, различают слабый дифференциал, или дифференциал Гато, и сильный дифференциал, или дифференциал Фреше. Если существует сильный Д., то существует и слабый Д., равный сильному Д. Слабый Д. может существовать и тогда, когда сильный не существует.