Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ДИ)
Шрифт:

В случае f (x) o x из общего определения следует, что df = h, т. е. можно приращение h считать Д. аргумента x и обозначать dx.

Если сделать теперь переменной точку x, в которой определяется Д. df, то он будет функцией двух переменных:

df (x; h).

Далее, считая h = h1 постоянным, можно найти Д. от дифференциала df (x; h1)

как главную часть приращения

df (x + h2; h1) — df (x; h1),

где h2 — некоторое второе, не связанное с h1 приращение x. Получаемый таким образом второй дифференциал d2f = d2f (x; h1, h2) является функцией трёх векторных аргументов x, h1 и h2, линейной по каждому из двух последних аргументов. Если d2f непрерывно зависит от x, то он симметричен относительно h1 и h2:

d2f (x; h1, h2) = d2f (x; h2, h1).

Аналогично определяется дифференциал dnf = dnf (x; h1,..., hn) любого порядка n.

В вариационном исчислении сам векторный аргумент x является функцией x (t), а дифференциалы df и d2f функционала f [x (t)] называются его первой и второй вариациями и обозначаются df и d2f.

Всюду выше речь шла об обобщении понятия Д. на числовые функции векторного аргумента. Существует обобщение понятия Д. и на случай вектор-функций, принимающих значения в банаховых пространствах.

Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 2 изд., М., 1967; Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 2 изд., М., 1968; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Кудрявцев Л. Д., Математический анализ, т. 1, М., 1970; Рудин У., Основы математического анализа, пер. с англ., М., 1966; Дьедонне Ж., Основы современного анализа, пер. с англ., М., 1964.

А. Н. Колмогоров.

Дифференциал (технич.)

Дифференциа'л,дифференциальный механизм в приводе ведущих колёс автомобиля, трактора или др. транспортных машин. Д. обеспечивает вращение ведущих колёс с разными относительными скоростями при прохождении кривых участков пути.

Дифференциальная геометрия

Дифференциа'льная геоме'трия, раздел геометрии, в котором геометрические образы изучаются методами математического анализа. Главными объектами Д. г. являются произвольные

достаточно гладкие кривые (линии) и поверхности евклидова пространства, а также семейства линий и поверхностей. Обычно в Д. г. исследуются локальные свойства геометрических образов, которые присущи сколь угодно малой их части. Рассматриваются также и свойства геометрических образов в целом (например, свойства замкнутых выпуклых поверхностей).

Геометрические объекты, изучаемые в Д. г., обычно подчинены некоторым требованиям гладкости. Как правило, эти требования выражаются в том, что функции, задающие указанные объекты, не менее двух раз непрерывно дифференцируемы.

Сущность методов Д. г., применяемых для выяснения локальных свойств геометрических объектов, проще всего уяснить на примере локального исследования формы кривых.

В каждой точке М достаточно гладкой кривой L можно построить касательную прямую МТ и соприкасающуюся плоскость p (рис. 1). При этом касательная МТ является пределом секущей MN при неограниченном приближении точки N к М по кривой L, а соприкасающаяся плоскость есть предел переменной плоскости, проходящей через касательную МТ и точку N при приближении N к М по L. Касательную МТ можно рассматривать также как прямую, наиболее тесно прилегающую к L вблизи точки М. Соприкасающаяся же плоскость представляет собой плоскость, наиболее тесно прилегающую к L вблизи М.

Для геометрической характеристики искривлённости кривой L вблизи данной точки М рассматривается соприкасающаяся окружность, представляющая собой окружность, проходящую через М и наиболее тесно прилегающую к L вблизи М. Это свойство выражается в том, что если учитывать величины только 1-го и 2-го порядка малости по сравнению с длиной дуги MN, то участок кривой L вблизи М можно считать дугой соприкасающейся окружности. Соприкасающаяся окружность касается L в точке М и расположена в соприкасающейся плоскости. Её центр называется центром кривизны кривой L в точке М, а радиус — радиусом кривизны L в М.

Для численной характеристики искривлённости L в точке М используется кривизнаk кривой, равная обратной величине радиуса R соприкасающейся окружности: k = 1/R. Кривизну k можно рассматривать и как меру отклонения L от касательной МТ (рис. 1):

или как скорость изменения (вращения) касательной к L (рис. 2):

где a — угол между касательными в точках М и N, а Ds — длина дуги MN.

Мерой отклонения кривой от соприкасающейся плоскости p в точке М служит так называемое кручение s, которое определяется как предел отношения угла b между соприкасающимися плоскостями в точках М и N к длине Ds дуги MN при Ds ® 0:

Поделиться:
Популярные книги

Мир Возможностей

Бондаренко Андрей Евгеньевич
1. Мир Возможностей
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Мир Возможностей

Лубянка. Сталин и НКВД – НКГБ – ГУКР «Смерш» 1939-март 1946

Коллектив авторов
Россия. XX век. Документы
Документальная литература:
прочая документальная литература
военная документалистика
5.00
рейтинг книги
Лубянка. Сталин и НКВД – НКГБ – ГУКР «Смерш» 1939-март 1946

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда

Новый Рал

Северный Лис
1. Рал!
Фантастика:
фэнтези
попаданцы
5.70
рейтинг книги
Новый Рал

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!