Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ЭЙ)
Шрифт:

Э. — М. ф. даёт следующее выражение:

.

Э.—М. ф. была впервые приведена Л. Эйлером в 1738. Независимо формула была открыта позднее К. Маклореном (1742).

Эйлера-Фурье формулы

Э'йлера—Фурье' фо'рмулы, формулы для вычисления коэффициентов разложения функции в тригонометрический ряд (ряд Фурье). Э.—Ф. ф. названы по имени Л. Эйлера , давшего (1777) первый их вывод, и Ж. Фурье , систематически (начиная с 1811) пользовавшегося тригонометрическими рядами при изучении задач теплопроводности. См. Фурье коэффициенты ,Тригонометрический ряд .

Эйлерова

характеристика

Э'йлерова характери'стика многогранника, число ao —a1 +a2 , где ao — число вершин, a1 — число рёбер и a2 — число граней многогранника. Если многогранник выпуклый или гомеоморфен (см. Гомеоморфизм ) выпуклому, то его Э. х. равна двум (теорема Л. Эйлера, 1758, известная ещё Р. Декарту).

Э. х. произвольного комплекса есть число

, где n — размерность комплекса, ao число его вершин, a1 число его рёбер, вообще ak есть число входящих в комплекс k– мерных симплексов. Оказывается, что Э. х. равна
 (формула Эйлера—Пуанкаре), где pk есть k– мерное число Бетти данного комплекса (см. Топология ). Отсюда следует топологическая инвариантность Э. х. Ввиду топологической инвариантности Э. х. говорят об Э. х. поверхности, а также полиэдра, подразумевая под этим Э. х. любой триангуляции этой поверхности (этого полиэдра).

Лит.: Александров П. С., Комбинаторная топология, М.— Л., 1947; Понтрягин Л. С., Основы комбинаторной топологии. 2 изд., М., 1976.

Эйлеровы интегралы

Э'йлеровы интегра'лы, интегралы вида

 (1)

(Э. и. первого рода, или бета-функция, изученная Л. Эйлером в 1730—31, ранее рассматривалась И. Ньютоном и Дж. Валлисом ) и

 (2)

[Э. и. второго рода, или гамма-функция , рассмотренная Л. Эйлером в 1729—30 в форме, эквивалентной формуле (2); сама формула (2) встречается у Эйлера в 1781]; название «Э. и.» дано А. Лежандром . Э. и. позволяют обобщить на случай непрерывно изменяющихся аргументов биномиальные коэффициенты

 и факториал n !, ибо, если а и b — натуральные числа, то

, Г (а +1) = а !

Интегралы (1) и (2) абсолютно сходятся, если а и b положительны, и перестают существовать, если а и b отрицательны. Имеют место соотношения

В (a , b ) = B (b , a ),

;

последнее сводит бета-функцию к гамма-функции. Существует ряд соотношений между Э. и. при различных значениях аргумента, обобщающих соответствующие соотношения между биномиальными коэффициентами. Э. и. можно рассматривать и при комплексных значениях аргументов а и b . Э. и. встречаются

во многих вопросах теории специальных функций , к ним сводятся многие определённые интегралы, не выражаемые элементарно. Э. и. называется также интеграл

выражающий т. н.гипергеометрическую функцию .

Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969; Артин Е., Введение в теорию гамма-функций, пер. с нем., М.— Л., 1934; Уиттекер Е. Т., Ватсон Д. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963.

Эйлеровы углы

Э'йлеровы углы', углы j, q, y определяющие положение прямоугольной декартовой системы координат OXYZ относительно другой прямоугольной декартовой системы координат Oxyz с той же ориентацией (см. рис. ). Пусть OK — ось (линия узлов), совпадающая с линией пересечения координатной плоскости Оху первой системы с координатной плоскостью ОХУ второй системы и направленная так, что оси Oz , OZ , OK образуют тройку той же ориентации. Тогда Э. у. будут: j — угол собственного вращения — угол между осями Ox и OK , отсчитываемый в плоскости Оху от оси Ox в направлении кратчайшего поворота от Ox к Оу , q — угол нутации, не превосходящий p угол между осями Oz и OZ ; y — угол прецессии — угол между осями OK и OX , отсчитываемый в плоскости ОХУ от оси OK в направлении кратчайшего поворота от OX к ОУ . При q = 0 или p Э. у. не определяются. Введены Л. Эйлером в 1748. Широко используются в динамике твёрдого тела (например, в теории гироскопа ) и небесной механике.

Рис. к ст. Эйлеровы углы.

Эйлер-Хельпин Ханс Карл Август Симон фон

Э'йлер-Хе'льпин (Euler-Chelpin) Ханс Карл Август Симон фон (15.2.1873, Аугсбург, Германия, — 6.11.1964, Стокгольм), шведский биохимик, член Королевской шведской АН. Потомок Л. Эйлера . Отец У. Эйлера . Окончил мюнхенскую АХ (1893), затем изучал химию и медицину в университетах Берлина, Страсбура и Гёттингена. Организатор и председатель (1908—63) Шведского химического общества. Профессор Стокгольмского университета (1906—29), директор Института органической химии и института витаминов (с 1929). Основные работы посвящены изучению механизма различных биохимических процессов. Исследовал кинетику и выяснил механизм ферментации сахаров. Отметил увеличение скорости химических реакций в живых организмах под действием ферментов и предложил назвать это явление биокатализом . Изучал структуру и механизм действия витамина А (совместно с П. Каррером ) и доказал, что b-каротин является провитамином А и содержится в пигменте глаза. Внёс значительный вклад в изучение биохимии опухолей. Нобелевская премия (1929, совместно с А. Гарденом ). Э.-Х. — иностранный член АН СССР (1927).

Соч.: Grundlagen und Ergebnisse der Pflanzenchemie, Tl 1—3, Braunschweig, 1908—09; Chemie der Enzyme, 3 Aufl., Tl 1—2, M"unch., 1925¾34.

Лит.: Тютюнник В. М., Ганс Карл Август Симон фон Эйлер-Хелпин, «Журнал

Всесоюзного хим. общества им. Д. И. Менделеева», 1975, т. 20, № 6, с. 642—43.

Эймёйден

Эймёйден (Ijmuiden), город и порт в Нидерландах, в провинции Северная Голландия, на Северном море. Аванпорт Амстердама, с которым Э. связывает канал Нордзе (или Амстердамский). Входит в амстердамскую агломерацию. Центр чёрной металлургии; химическая, цементная промышленность.

Поделиться:
Популярные книги

Завод-3: назад в СССР

Гуров Валерий Александрович
3. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод-3: назад в СССР

Мир Возможностей

Бондаренко Андрей Евгеньевич
1. Мир Возможностей
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Мир Возможностей

От океана до степи

Стариков Антон
3. Игра в жизнь
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
От океана до степи

В прятки с отчаянием

AnnysJuly
Детективы:
триллеры
7.00
рейтинг книги
В прятки с отчаянием

Гранд империи

Земляной Андрей Борисович
3. Страж
Фантастика:
фэнтези
попаданцы
альтернативная история
5.60
рейтинг книги
Гранд империи

Фронтовик

Поселягин Владимир Геннадьевич
3. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Фронтовик

Измена. Вторая жена мужа

Караева Алсу
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Вторая жена мужа

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Сделать выбор

Петрова Елена Владимировна
3. Лейна
Фантастика:
юмористическое фэнтези
попаданцы
8.43
рейтинг книги
Сделать выбор

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

Невеста инопланетянина

Дроздов Анатолий Федорович
2. Зубных дел мастер
Фантастика:
космическая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Невеста инопланетянина

Единственная для невольника

Новикова Татьяна О.
Любовные романы:
любовно-фантастические романы
5.67
рейтинг книги
Единственная для невольника

Весь Роберт Маккаммон в одном томе. Компиляция

МакКаммон Роберт Рик
Абсолют
Фантастика:
боевая фантастика
5.00
рейтинг книги
Весь Роберт Маккаммон в одном томе. Компиляция