Большая Советская Энциклопедия (ФО)
Шрифт:
Соч.: Der Formalismus der Kantischen Ethik in seiner Notwendigkeit und Fruchtbarkeit, Marburg, 1893: 1. Kant. Der Mann und dasWerk, Bd 1–2, Lpz., 1924; Von Machiavelli bis Lenin. Neuzeitliche Staatsund Gesellschaftstheorien, Lpz., 1926; в рус. пер. – Кант и социализм. Обзор новейших теоретических течений в марксизме. М., 1906; Современный социализм и философская этика, М., 1907; Кант и Маркс, СПБ, 1909; История философии, т. 1, СПБ, 1911. См. также лит. при ст. Неокантианство .
А. П. Огурцов.
Форли
Форли' (Forii), город в Северной Италии, в области Эмилия-Романья, на древней Эмилианской дороге. Административный центр провинции Форли. 107,7 тыс. жителей (1973). Машиностроение, химическая (в т. ч. производство искусственных
Форма (биол.)
Фо'рма (forma), одна из инфраподвидовых категорий в систематике растений и животных. Ботаниками употребляется обычно для обозначения категории по рангу ниже, чем разновидность ; зоологами – как синоним термина вариетет . Иногда термин «Ф.» применяют в том же значении, что и термин таксон , т. е. для обозначения систематической единицы любого ранга. В биологической литературе термин «Ф.» широко используется не только в строго таксономическом значении, но и для того, чтобы отметить различные особенности, связанные с циклом развития, характером существования, динамикой и становлением вида (например, полнокрылые и короткокрылые Ф. у насекомых, сезонные Ф. у растений, экологические, архаичные, прогрессивные, специализированные и многие другие формы у всех живых организмов).
Форма (в логике)
Фо'рма в логике, форма логическая, та сторона рассуждения (доказательства, вывода, аргументации и т.п.), которая не зависит от содержания данного рассуждения. Логическая форма в языке фиксируется посредством логических констант и образуемых с их помощью отдельных фраз и их сочетаний – схем рассуждения (форм вывода, выражающих связь посылок и заключения), в которых может воплощаться разное содержание. Именно к логическим формам относятся устанавливаемые в (формальной, математической) логике логические законы и правила логических перехода (см. Правило вывода ), а также многие исследуемые в ней проблемы (в частности, проблема уточнения понятия логического следования).
Форма (внеш. вид)
Фо'рма (лат. forma – форма, вид, образ), 1) очертания, внешний вид, контуры предмета. 2) Внешнее выражение какого-либо содержания (см. Содержание и форма ). 3) Приспособление для придания чему-либо определённых очертаний (например, литейная Ф.). 4) Единая по цвету, покрою и др. признакам одежда [например, Ф. военнослужащих (см. Обмундирование военное ), учащихся и др.]. См. также статьи Форма (математическая), Форма (биологическая), Музыкальная форма , Форма слова .
Форма государства
Фо'рма госуда'рства, в узком смысле форма правления , в широком смысле включает в себя также форму государственного устройства (унитарное государство , федерация , характер взаимоотношений между государством и его частями, между центральными и местными органами управления и др.) и политический режим, т. е. совокупность методов и приёмов осуществления государственной власти.
Форма (матем.)
Фо'рма (математическая), многочлен от нескольких переменных, все члены которого имеют одну и ту же степень (под степенью одночлена хa уb ... zg понимают число a + b +... + g). Теория Ф. находит применение в алгебраической геометрии, теории чисел, дифференциальной геометрии, механике и др. областях математики и её приложений.
В зависимости от числа m переменных Ф. называют бинарными (при m = 2), тернарными (при m = 3)
Уравнение любой алгебраической кривой на плоскости может быть записано в однородных координатах в виде f (x1 , x2 , x3 ) = 0, где f – некоторая тернарная Ф. Аналогично можно дать геометрическое истолкование Ф. большего числа переменных. Геометрические свойства кривых поверхностей и т.д., не зависящие от выбора системы координат, выражаются при помощи инвариантов Ф. Теория инвариантов является одним из основных разделов алгебраической теории Ф., находящим применение не только в алгебраической геометрии, но и в ряде др. разделов математики и её приложений.
Наиболее важными для приложений являются квадратичные формы . Например, квадрат длины вектора выражается в виде квадратичной Ф. от его координат. Если механическая система при движении остаётся близкой к положению равновесия, то её кинетическая и потенциальная энергия (если они не зависят явно от времени) выражаются, соответственно, квадратичными Ф. вида:
Изучение колебаний таких систем основано на теории квадратичных Ф., в частности на приведении этих Ф. к сумме квадратов. Теория квадратичных Ф. тесно связана с теорией кривых и поверхностей второго порядка (см. также Эрмитова форма ).
Брачный сезон. Сирота
Любовные романы:
любовно-фантастические романы
рейтинг книги
Адвокат империи
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
рейтинг книги
Лейб-хирург
2. Зауряд-врач
Фантастика:
альтернативная история
рейтинг книги
Измена. Верни мне мою жизнь
Любовные романы:
современные любовные романы
рейтинг книги
На границе империй. Том 5
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
Бастард Императора. Том 2
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
На изломе чувств
Любовные романы:
современные любовные романы
рейтинг книги
Буревестник. Трилогия
Фантастика:
боевая фантастика
рейтинг книги
Убивать чтобы жить 6
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
рейтинг книги
Приватная жизнь профессора механики
Проза:
современная проза
рейтинг книги

Башня Ласточки
6. Ведьмак
Фантастика:
фэнтези
рейтинг книги
Два мира. Том 1
Фантастика:
фэнтези
попаданцы
мистика
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
