Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ГИ)
Шрифт:

Гильберт Уильям

Ги'льберт, Гилберт (Gilbert) Уильям (24.5.1544, Колчестер, — 30.11.1603, Лондон или Колчестер), английский физик, придворный врач. Г. принадлежит первая теория магнитных явлений. Он впервые выдвинул предположение, что Земля является большим магнитом, и, намагнитив железный шар, показал, что он действует на магнитную стрелку так же, как и Земля. Предположил, что магнитные полюсы Земли совпадают с географическими. Г. установил, что многие тела, подобно янтарю, обладают свойством притягивать лёгкие предметы после натирания. Он исследовал эти свойства и назвал их электрическими (по-гречески янтарь — электрон), впервые введя этот термин в науку. Г. первым в Англии выступил с критикой учения Аристотеля

и в защиту учения Н. Коперника.

Соч.: De magneto, magneticisque corporibus et de magno magneto tellure. Physiologia поуа, L., 1600; De mundi nostri sublunaris philosophia nova, Amst., 1651; в рус. пер. — О магните, магнитных телах и большом магните — Земле. Новая физиология, доказанная множеством аргументов и опытов, М., 1956.

Лит.: Лебедев В. И., Исторические опыты по физике, М. — Л., 1937; Д. Р., Уильям Гильберт. К 50-летию со дня смерти, «Электричество», 1953, № 12.

Гильбертово пространство

Ги'льбертово простра'нство, математическое понятие, обобщающее понятие евклидова пространства на бесконечномерный случай. Возникло на рубеже 19 и 20 вв. в виде естественного логического вывода из работ нем. математика Гильберта в результате обобщения фактов и методов, относящихся к разложениям функций в ортогональные ряды и к исследованию интегральных уравнений. Постепенно развиваясь, понятие «Г. п.» находило все более широкие приложения в различных разделах математики и теоретической физики; оно принадлежит к числу важнейших понятии математики.

Первоначально Г. п. понималось как пространство последовательностей со сходящимся рядом квадратов (т. н. пространство l2). Элементами (векторами) такого пространства являются бесконечные числовые последовательности

x = (x1, x2,..., xn,...)

такие, что ряд x21 + x22 +... + х2n + ... сходится. Сумму двух векторов х + y и вектор lx, где l — действительное число, определяют естественным образом:

x + y = (x1 + y1,..., xn + yn,...),

lx = (lx1, lx2, ..., lxn,...)/

Для любых векторов х, y ^I l2 формула

(x, y) = x1y1 + x2y2 + ... +xnyn + ...

определяет их скалярное произведение, а под длиной (нормой) вектора х понимается неотрицательное число

Скалярное произведение всегда конечно и удовлетворяет неравенству |(х, у)| lb ||x|| ||y||. Последовательность векторов хn называется сходящейся к вектору х, если ||хn—х|| ® 0 при n ® yen. Многие определения и факты

теории конечномерных евклидовых пространств переносятся и на Г. п. Например, формула

где 0 lb j lb p определяет угол j между векторами х и у. Два вектора х и у называются ортогональными, если (х, у) = 0. Пространство l2 полно: всякая фундаментальная последовательность Коши элементов этого пространства (т. е. последовательность хn, удовлетворяющая условию ||хп—хm||® 0 при n, m ® yen) имеет предел. В отличие от евклидовых пространств, Г. п. l2 бесконечномерно, т. е. в нём существуют бесконечные системы линейно независимых векторов; например, такую систему образуют единичные векторы

e1 = (1, 0, 0,...), e2 = (0, 1, 0,...),...

При этом для любого вектора x из l2 имеет место разложение

x = x1e1 + x2e2 +... (1)

по системе {en}.

Другим важным примером Г. п. служит пространство l2 всех измеримых функций, заданных на некотором отрезке [a, b], для которых конечен интеграл

понимаемый как интеграл в смысле Лебега. При этом функции, отличающиеся друг от друга лишь на множество меры нуль, считаются тождественными. Сложение функций и умножение их на число определяется обычным способом, а под скалярным произведением понимается интеграл

Норма в этом случае равна

Роль единичных векторов предыдущего примера здесь могут играть любые функции ji(x) из L2, обладающие свойствами ортогональности

и нормированности

а также следующим свойством замкнутости: если f(x) принадлежит L2 и

Поделиться:
Популярные книги

Товарищ "Чума" 3

lanpirot
3. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 3

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Последняя из забытого рода

Властная Ирина
1. Последняя из забытого рода
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя из забытого рода

Курсант. На Берлин

Барчук Павел
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант. На Берлин

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Недотрога для темного дракона

Панфилова Алина
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Недотрога для темного дракона

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25