Большая Советская Энциклопедия (ХЕ)
Шрифт:
Хемомеха'ника полимеров, область физической химии полимеров, изучающая обратимое превращение химической энергии в механическую, обусловленное переходом макромолекул из одной конформации в другую. Любые изменения химического потенциала среды, в которой находится макромолекула , вызывают изменение её конформации , и, наоборот, изменение конформации макромолекул при механическом воздействии на неё вызывает изменение химического потенциала среды (т. н. тейнохимический принцип). Наиболее известное проявление тейнохимического принципа связано с набуханием полиэлектролитов : Повышение степени ионизации полиэлектролита приводит к увеличению размеров клубка макромолекулы, понижение — к сокращению. Набухающий в воде жгут, содержащий полиэлектролит, при периодическом изменении водородного показателя (pH) воды будет периодически удлиняться и сокращаться. При сокращении жгут может производить механическую работу, что положено в основу т. н. химической машины (рН-мускула). Такие машины, созданные для иллюстрации тейнохимического принципа, способны поднимать тела массой 1 т .
Возможности тейнохимического
Лит.: Энциклопедия полимеров, т. 3, М 1977.
Хеморецепторы
Хемореце'пторы (от хемо... и рецепторы ), специализированные чувствительные клетки или клеточные структуры (например, нервные окончания), посредством которых организм животных и человека воспринимает химические раздражения, в том числе изменения в обмене веществ. Воздействие химических веществ на Х. приводит, как и при действии других раздражителей на соответствующие рецепторные клетки, к появлению в Х. и связанных с ними нервных клетках биоэлектрических потенциалов . Некоторые Х. отличаются высокой избирательностью, реагируя только на одно вещество или небольшую группу их. Таковы, например, у насекомых Х., чувствительные к феромонам , или рецепторы, реагирующие на углекислый газ. Внешние (сенсорные) Х. сигнализируют о колебаниях pH и ионного состава водной среды, газового состава воздушной среды, о присутствии во внешнем пространстве (или ротовой полости) питательных, едких или ядовитых веществ, а также специальных химических сигналов, которыми обмениваются живые организмы. Внутренние Х. (один из типов интерорецепторов ) чувствительны к химическим компонентам крови и др. внутренних сред организма. Х. — эволюционно, вероятно, наиболее древние рецепторные образования. К сенсорным Х. позвоночных относятся обонятельные и вкусовые клетки, расположенные в обоняния органах и вкусовых органах , а также свободные нервные окончания в покровах тела, осуществляющие функцию «общего химического чувства». У некоторых беспозвоночных, например у насекомых, на основании функциональных и морфологических признаков тоже выделяют обонятельные и вкусовые Х., однако такое разделение не всегда применимо к Х. беспозвоночных, особенно водных форм.
В молекулярной биологии термин «Х.» используется также для обозначения субклеточных образований — специализированных макромолекулярных структур, расположенных на наружной поверхности клеточной мембраны и взаимодействующих с молекулами химических раздражителей. В таком смысле, например, можно говорить о Х. простейших. См. также Хеморецепция .
А. В. Минор.
Хеморецепция
Хемореце'пция, восприятие одноклеточным организмом или специализированными клетками (хеморецепторами ) многоклеточного организма существенных для его жизнедеятельности химических раздражителей, находящихся во внешней или внутренней среде. Х. — один из наиболее древних видов рецепции , свойственный не только животным, но и подвижным бактериям, миксомицетам, половым клеткам водорослей. Способность в той или иной мере анализировать химический состав окружающей среды и реагировать определённым образом на его изменения присуща всем живым организмам. На основе этой способности у них в ходе эволюции образовалось несколько специализированных видов Х. У микроорганизмов сравнительно хорошо изучена Х. пищевых веществ. Так, у кишечной палочки некоторые сахара (например, глюкоза, галактоза, рибоза) вызывают положительный хемотаксис, т. е. изменения в характере движений, способствующие перемещению бактерий в область более высокой концентрации вещества. Двигательная реакция отдельной бактерии стимулируется первичным актом Х. — взаимодействием молекул химического раздражителя с хеморецептивным белком, находящимся в клеточной оболочке. При этом молекулы вещества строго избирательно (по принципу «ключ — замок») связываются определёнными рецептивными участками молекулы хеморецепторного белка. Из культуры кишечной палочки удаётся выделить несколько типов хеморецептивных белков, например «галактозочувствительный», «рибозочувствительный» и др., специфичность которых обусловлена генетически.
У многоклеточных организмов обособляется сенсорная Х., на основе которой развиваются органы чувств. Для позвоночных животных, а также для насекомых характерны специализированные формы Х. — обонятельная и вкусовая. Первоначально Х. возникла у организмов, обитающих в водной среде, и была связана с восприятием растворённых в воде веществ, которые могли иметь большую молекулярную массу. С появлением наземных животных Х. разделилась на контактную и дистантную. В последнем случае раздражителями могут служить только достаточно летучие вещества, т. е. имеющие невысокую молекулярную массу.
У наземных животных контактная и дистантная Х. обычно представлена соответственно вкусовой и обонятельной рецепцией. У животных имеется и малоспециализированный тип Х. — «общее химическое чувство», с помощью которого обеспечивается чувствительность покровов тела к едким, раздражающим веществам. Химический анализ внутренних сред организма (например, крови, тканевой жидкости) осуществляется посредством интерорецепции. Наряду с сенсорной Х. и интерохеморецепцией у многоклеточных организмов в ходе эволюционного развития выделились др. типы клеточной рецепции, которые также можно отнести к Х. в широком смысле слова, например рецепция гормонов, рецепция синаптических медиаторов.
Лит. см. при статьях Вкус , Интерорецепция , Обоняние , Рецепторы , Феромоны .
А. В. Минор.
Хемосинтез
Хемоси'нтез (от хемо... и синтез ), правильнее — хемолитоавтотрофия, тип питания, свойственный некоторым бактериям, способным усваивать CO2
Бактерии, способные к Х., не являются единой в таксономическом отношении группой, а систематизируются в зависимости от окисляемого неорганического субстрата. Среди них встречаются микроорганизмы, окисляющие водород, окись углерода, восстановленные соединения серы, железо, аммиак, нитриты, сурьму. Водородные бактерии — наиболее многочисленная и разнообразная группа хемосинтезирующих организмов; осуществляют реакцию 6H2 + 2O2 + CO2 = (CH2 O) + 5H2 O, где (CH2 O) — условное обозначение образующихся органических веществ. По сравнению с др. автотрофными микроорганизмами характеризуются высокой скоростью роста и могут давать большую биомассу. Эти бактерии способны также расти на средах, содержащих органические вещества, т. е. являются миксотрофными, или факультативно хемоавтотрофными бактериями. Близки к водородным бактериям карбоксидобактерии, окисляющие CO по реакции 25CO + 12O2 + H2 O + 24CO2 + (CH2 O). Тионовые бактерии окисляют сероводород, тиосульфат, молекулярную серу до серной кислоты. Некоторые из них (Thiobacillus ferrooxidans) окисляют сульфидные минералы, а также закисное железо. Способность к Х. у разнообразных водных серобактерий остаётся недоказанной. Нитрифицирующие бактерии окисляют аммиак до нитрита (1-я стадия нитрификации ) и нитрит в нитрат (2-я стадия). В анаэробных условиях Х. наблюдается у некоторых денитрифицирующих бактерий, окисляющих водород или серу, но часто они нуждаются в органическом веществе для биосинтеза (литогетеротрофия). Описан Х. у некоторых строго анаэробных метанообразующих бактерий по реакции 4H2 + CO2 = CH4 + 2H2 O.
Биосинтез органических соединений при Х. осуществляется в результате автотрофной ассимиляции CO2 (цикл Калвина) точно так же, как при фотосинтезе. Энергия в виде АТФ получается от переноса электронов по цепи дыхательных ферментов, встроенных в клеточную мембрану бактерий (см. Окислительное фосфорилирование ). Некоторые окисляемые вещества отдают электроны в цепь на уровне цитохрома с, что создаёт дополнительный расход энергии для синтеза восстановителя. В связи с большим расходом энергии хемосинтезирующие бактерии, за исключением водородных, образуют мало биомассы, но окисляют большое количество неорганических веществ. В биосфере хемосинтезирующие бактерии контролируют окислительные участки круговорота важнейших элементов и поэтому представляют исключительное значение для биогеохимии. Водородные бактерии могут быть использованы для получения белка и очистки атмосферы от CO2 в замкнутых экологических системах. Морфологически хемосинтезирующие бактерии весьма разнообразны, хотя большинство из них относится к псевдомонадам, они имеются среди почкующихся и нитчатых бактерий, спирилл, лептоспир, коринебактерий.
Лит.: Кузнецов С. И., Микрофлора озер и ее геохимическая деятельность, Л., 1970; Заварзин Г. А., Литотрофные микроорганизмы, М., 1972; Каравайко Г. И., Кузнецов С. И., Голомзик А. И., Роль микроорганизмов в выщелачивании металлов из руд, М., 1972.
Г. А. Заварзин.
Хемосорбция
Хемосо'рбция, химическая сорбция, поглощение жидкостью или твёрдым телом веществ из окружающей среды, сопровождающееся образованием химических соединений. В более узком смысле Х. рассматривают как химическое поглощение вещества поверхностью твёрдого тела, т. е. как химическую адсорбцию . При Х. выделяется значительное количество тепла: обычно теплоты Х. лежат в пределах 84—126 кдж/моль (20—30 ккал/моль ), а в некоторых случаях, например при Х. кислорода на металлах, могут превышать 420 кдж/моль (100 ккал/моль ). Подобно химическим реакциям, Х. требует, как правило, значительной энергии активации. Поэтому при повышении температуры Х. ускоряется (т. н. активированная адсорбция). Х. избирательна, т. е. зависит от химического сродства адсорбируемого вещества к поверхности твёрдого тела. Для изучения Х. применяют физические методы: спектроскопию, электронный парамагнитный и ядерный магнитный резонанс, электронный и ионный проекторы, дифракцию медленных электронов и др. Х. играет большую роль в гетерогенном катализе, очистке газов, вакуумной технике и др.
Лит. см. при ст. Адсорбция .
М. У. Кислюк.
Хемостерилизаторы
Хемостерилиза'торы насекомых, химические вещества, обладающие стерилизующим (лишающим способности воспроизводить потомство) действием; используются для биологической борьбы с вредными насекомыми (вызывают генетические и функциональные нарушения в их организме). Делятся на 3 группы. Антиметаболиты (АМ) — метотрексат, аминоптерин, фторурацил и др. химические соединения, которые при попадании в организм насекомого вытесняют нормальные метаболиты в обменных реакциях, нарушают синтез ДНК и РНК в ядрах половых клеток и вызывают стерилизацию главным образом самок. Алкилирующие вещества (АВ) — хлорамбуцил, афолат, афоксид (ТЭФ), его структурные аналоги меТЭФ, тиоТЭФ и др., которые приводят к изменениям в хромосомах половых клеток (многократное их сцепление или разрыв) и вызывают стерильность в основном самцов. Прочие химические соединения — гербициды типа триазонов, ксилогидрохинон, некоторые антибиотики, алкалоиды, отдельные аналоги гормонов насекомых, которые могут быть Х.
Шаман. Ключи от дома
2. Шаман
Фантастика:
боевая фантастика
рейтинг книги
Мой личный враг
Детективы:
прочие детективы
рейтинг книги
Господин следователь 6
6. Господин следователь
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Друд, или Человек в черном
Фантастика:
социально-философская фантастика
рейтинг книги
Тот самый сантехник. Трилогия
Тот самый сантехник
Приключения:
прочие приключения
рейтинг книги
Сила рода. Том 1 и Том 2
1. Претендент
Фантастика:
фэнтези
рпг
попаданцы
рейтинг книги
Крепость над бездной
4. Гибрид
Фантастика:
боевая фантастика
попаданцы
аниме
фэнтези
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника
Любовные романы:
любовно-фантастические романы
рейтинг книги
Новый Рал 10
10. Рал!
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Наследие Маозари 4
4. Наследие Маозари
Фантастика:
фэнтези
попаданцы
рейтинг книги
Хранители миров
Фантастика:
юмористическая фантастика
рейтинг книги
