Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ИН)
Шрифт:

При распространении радиоволн И. р. возникает прежде всего из-за их отражения от поверхности Земли, в результате чего в каждую точку над Землёй приходят 2 волны — пришедшая прямо и отражённая, интерферирующие друг с другом (рис. 2 ). В связи с этим на диаграмме направленности приёмной антенны появляются дополнительные лепестки, число которых тем больше, чем больше высота антенны над Землёй и чем меньше длина волны. При распространении средних и коротких радиоволн интерференция возникает в том случае, если в одну и ту же точку пространства попадают волны, идущие непосредственно от передатчика и отражённые от ионосферы , или волны, отражённые разными участками ионосферы. Для ультракоротких радиоволн интерференция нередко получается за счёт прихода в данную точку волн, прошедших различные пути в тропосфере , либо за счёт их отражения от местных предметов.

 В радиотехнике во многих случаях возможно прямое измерение разности фаз интерферирующих

колебаний, а так как в интерференционной картине распределение разностей фаз обусловлено взаимным расположением излучателя и приёмника, то их измерение может служить методом определения местоположения приёмника радиоволн относительно излучателя. На этом основан ряд фазовых радионавигационных систем.

В отличие от оптики, в радиотехнике возможно непосредственное измерение частоты излучаемых волн. Поэтому, исследуя интерференционную структуру поля двух передатчиков, можно измерять расстояние между ними. Наоборот, зная это расстояние, можно с высокой степенью точности определять скорость распространения радиоволн в данных условиях. Существует ряд интерференционных методов измерения расстояний и скорости радиоволн (см. Радиодальномер ).

Лит.: Мигулин В. В., Интерференция радиоволн, «Успехи физических наук», 1947, т. 33, в. 3.

Рис. 1. Многолепестковая диаграмма направленности антенны — результат интерференции радиоволн, излучаемых её отдельными элементами.

Рис 2. Интерференция радиоволн при их распространении вдоль поверхности Земли.

Интерференция света

Интерфере'нция све'та, сложение световых волн, при котором обычно наблюдается характерное пространственное распределение интенсивности света (интерференционная картина) в виде чередующихся светлых и тёмных полос вследствие нарушения принципа сложения интенсивностей (см. Интерференция волн). Некоторые явления И. с. наблюдались ещё И. Ньютоном , но не могли быть объяснены с точки зрения его корпускулярной теории (см. Свет , Оптика ). Правильное объяснение И. с. как типично волнового явления было дано в начале 19 в. Т. Юнгом и О. Френелем .

И. с. возникает только в случае, если разность фаз постоянна во времени, т. е. волны когерентны (см. Когерентность ). До создания лазеров когерентные световые пучки могли быть получены только путём разделения и последующего сведения лучей, исходящих из одного и того же источника света. При этом разность фаз этих колебаний постоянна и определяется только разностью путей, проходимых лучами, или разностью хода D. Существует несколько способов создания когерентных пучков света. Например, в опыте Френеля (рис. 1 ) два плоских зеркала I и II, образующих двугранный угол, близкий к 180°, дают два мнимых изображения S1 и S2 источника S. На экране AB получается светлая полоса при разности хода D лучей S1M и S2M , равной чётному числу полуволн, и тёмная полоса — при D, равной нечётному числу полуволн. Другой способ был предложен Юнгом (рис. 2 ) . Свет из отверстия S падает на экран AB с двумя отверстиями (или щелями) S1 и S2. И. с. наблюдается на экране CD. Расстояние между соседними светлыми или тёмными интерференционными полосами Dх » l/a, где a — угол S1MS2, под которым сходятся интерферирующие лучи. В этих опытах И. с. наблюдается только при сложении волн, испущенных из одной и той же точки источника. Интерференционные полосы, соответствующие разным точкам источника, сдвинуты относительно друг друга, и при наложении интерференционные картины смазываются. Предельный размер источника, ещё дающего чёткую интерференционную картину, определяется соотношением d = l/b, где b — угол, под которым расходятся лучи из источника (например, DS1SS2 на рис. 2 ).

Это ограничение не имеет места в случае И. с., отражённого от двух поверхностей плоской или слабоклиновидной прозрачной пластинки (рис. 3 ) . При этом между отражёнными лучами возникает

разность хода D = 2hn cos i’ c + l/2, где h — толщина пластинки, n — её показатель преломления, i c — угол преломления. Добавочная разность хода l/2 возникает из-за различия сдвига фазы при отражении от верхней и нижней поверхностей пластинки. В строго плоскопараллельных пластинках (с точностью до долей l) одинаковую разность хода будут иметь лучи, падающие на пластинку под одним и тем же углом i , а интерференционные полосы в этом случае называются полосами равного наклона. Они локализованы в бесконечности, поэтому их можно наблюдать в главной фокальной плоскости линзы. В тонких пластинках переменной толщины линии максимумов и минимумов проходят по точкам, соответствующим равной толщине пластинки, и называются полосами равной толщины. Они локализованы в плоскости пластинки. При этом данная интерференционная полоса в монохроматическом свете вычерчивает линию, соответствующую одной и той же толщине пластинки (рис. 4 ) . Если свет не монохроматический, происходит наложение описанных картин для различных длин волн (между собой не интерферирующих); причём положения максимумов и минимумов смещены, поэтому в случае тонкой пластинки наблюдатель видит последовательность цветных полос. Этим явлением И. с. в тонких плёнках объясняются радужная окраска пятен масла или нефти на воде, цвета побежалости на закалённых металлах и др. И. с. в тонких плёнках играет большую роль при просветлении оптики , в интерференциальных светофильтрах , в интерференциальной микроскопии и др. И. с. в тонких плёнках изучается в оптике тонких слоев .

Возможность наблюдения И. с. зависит от степени монохроматичности света. В белом свете можно наблюдать только несколько интерференционных полос вблизи D = 0, которые в этом случае окрашены, потому что положение максимумов и минимумов зависит от длины волны. Если из источника света выделена одна узкая спектральная линия, максимальная разность хода Dmax может достигать нескольких десятков см. Чёткие интерференционные полосы ещё можно наблюдать при Dmax » l2 /Dl, где Dl — ширина спектра. Dmax можно связать со временем t, в течение которого фаза волны не сбивается, т. е. излучается волна в виде отрезка синусоиды («цуг волн»). При этом Dmax оказывается равной длине цуга: Dmax = l2 /Dl = c t (c — скорость света), что поясняет невозможность И. с. при D > Dmax , так как соответствующие цуги в двух интерферирующих пучках перестают перекрываться друг другом.

Ограничения размеров источника в приведённых выше опытах снимаются, если источником света служит излучение лазера, которое обладает пространственной когерентностью, и И. с. может наблюдаться при сложении волн, испускаемых разными точками источника. Высокая монохроматичность лазерного излучения позволяет наблюдать И. с. при огромной разности хода.

При очень малых интенсивностях света, когда при помощи чувствительных приёмников регистрируются отдельные фотоны, И. с. проявляется как статистическое явление. Среднее число квантов, попавших на тот или другой участок экрана в течение определённого времени, даёт такое же распределение интенсивности, что и при обычном способе наблюдения. Это находится в полном соответствии с квантовой теорией, согласно которой И. с. происходит не в результате сложения разных фотонов, а в результате «интерференции фотона самого с собой».

И. с. имеет самое широкое применение для измерения длины волны излучения, исследования тонкой структуры спектральной линии, определения плотности, показателей преломления и дисперсионных свойств веществ, для измерения углов, линейных размеров деталей в длинах световой волны, для контроля качества оптических систем и многого другого. На использовании И. с. основано действие интерферометров и интерференционных спектроскопов; метод голографии также основан на И. с.

Важный случай И. с. — интерференция поляризованных лучей (см. Поляризация света ). В общем случае, когда складываются две различно поляризованные когерентные световые волны, происходит векторное сложение их амплитуд, что приводит к эллиптической поляризации. Это явление наблюдается, например, при прохождении линейно поляризованного света через анизотропные среды. Попадая в такую среду, линейно поляризованный луч разделяется на 2 когерентных, поляризованных во взаимно перпендикулярных плоскостях луча. Вследствие различного состояния поляризации скорость их распространения в этой среде различна и между ними возникает разность фаз D, зависящая от расстояния, пройденного в веществе. Величина D будет определять состояние эллиптической поляризации; в частности, при D, равной целому числу полуволн, поляризация будет линейной.

Интерференцию поляризованных лучей широко используют в кристаллооптике для определения структуры и ориентации осей кристалла, в минералогии для определения минералов и горных пород, для обнаружения и исследования напряжений и деформаций в твёрдых телах, для создания особо узкополосных светофильтров и др.

Лит.: Ландсберг Г. С., Оптика. 4 изд., М., 1957 (Общий курс физики, т. 3); Вавилов С. И., Микроструктура света, ч. 2, М., 1950; Борн М., Вольф Э., Основы оптики, пер. с англ., М., 1970.

Поделиться:
Популярные книги

Блуждающие огни

Панченко Андрей Алексеевич
1. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни

Третий

INDIGO
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий

Кир Булычев. Собрание сочинений в 18 томах. Т.3

Булычев Кир
Собрания сочинений
Фантастика:
научная фантастика
7.33
рейтинг книги
Кир Булычев. Собрание сочинений в 18 томах. Т.3

Полное собрание сочинений в одной книге

Зощенко Михаил Михайлович
Проза:
классическая проза
русская классическая проза
советская классическая проза
6.25
рейтинг книги
Полное собрание сочинений в одной книге

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Предназначение

Ярославцев Николай
1. Радогор
Фантастика:
фэнтези
2.30
рейтинг книги
Предназначение

Приемыш. Дилогия

Ищенко Геннадий Владимирович
Приемыш
Фантастика:
фэнтези
8.13
рейтинг книги
Приемыш. Дилогия

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Отморозок 2

Поповский Андрей Владимирович
2. Отморозок
Фантастика:
попаданцы
5.00
рейтинг книги
Отморозок 2

Сделать выбор

Петрова Елена Владимировна
3. Лейна
Фантастика:
юмористическое фэнтези
попаданцы
8.43
рейтинг книги
Сделать выбор