Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (КО)
Шрифт:

Мексиканская кошениль: 1 — самец; 2 — самка; 3 — самки, сидящие на кактусе.

Кошенильный кактус

Кошени'льный ка'ктус (Nopalea cochenillifera), древовидный или кустарниковидный кактус 3—4 м высотой, на котором живёт, питаясь им, насекомое кошениль . Плоскими членистыми стеблями К. к. напоминает опунцию . Родина К, к. — Мексика и тропическая Центральная Америка. В начале 19 в. К. к. широко культивировался в Испании, Алжире, Индии, Южной Африке и др. странах из-за кошенили, используемой для получения кармина .

Когда кармин стали получать искусственным путём, культура К. к. сократилась; значительные его плантации сохранились только на Канарских островах.

Кошенильный кактус.

Коши - Адамара теорема

Коши' — Адама'ра теоре'ма, теорема теории аналитических функций, позволяющая судить о сходимости степенного ряда

a +a1 (z—z )+...+an (z—z ) n +... ,

где a , a1 ,..., an фиксированные комплексные числа, a z — комплексное переменное. К.—А. т. гласит: если верхний предел

,

то при r = yen ряд абсолютно сходится во всей плоскости; при r = 0 ряд сходится только в точке z = z и расходится при z &sup1; zo ; наконец, в случае, когда 0 < r < yen ряд абсолютно сходится в круге |z—z | < r и расходится вне этого круга. Эта теорема была установлена О. Коши (1821) и вновь доказана Ж. Адамаром (1888), указавшим на её важные приложения.

Коши - Римана уравнения

Коши' — Ри'мана уравне'ния в теории аналитических функций, дифференциальные уравнения с частными производными 1-го порядка, связывающие действительную и мнимую части аналитической функции v = u + iu комплексного переменного z= х + iy:

,

Эти уравнения имеют основное значение в теории аналитических функций и её приложениях к механике и физике; они впервые были рассмотрены Ж. Д’Аламбером и Л.Эйлером , задолго до работ О. Коши и Б. Римана .

Коши задача

Коши' зада'ча, одна из основных задач теории дифференциальных уравнений , впервые систематически изучавшаяся О. Коши . Заключается в нахождении решения u (x, t); х = (x1 ,..., xn ) дифференциального уравнения вида:

, (1)

 m < m, m > 0,

удовлетворяющего

т. н. начальным условиям.

, t = t , x ^I G , k = 0, …, m-1, (2)

где G — носитель начальных данных — область гиперплоскости t = to пространства переменных x1 ,..., xn . Когда F и fk , k = 0,..., m — 1, являются аналитическими функциями своих аргументов, задача Коши (1), (2) в некоторой области G пространства переменных t, х, содержащей G , всегда имеет и притом единственное решение. Однако это решение может оказаться неустойчивым (т. е. малое изменение начальных данных может вызвать сильное изменение решения), например в том случае, когда уравнение (1) принадлежит эллиптическому типу. При неаналитических данных задача Коши (1), (2) может потерять смысл, если не ограничиться рассмотрением того случая, когда уравнение (1) является гиперболическим.

Лит.: Курант Р., Гильберт Д., Методы математической физики, пер. с нем., т. 2, М.— Л., 1951; Тихонов А. Н., Самарский А. А., Уравнения математической физики, 3 изд., М., 1966.

А. В. Бицадзе.

Коши интеграл

Коши' интегра'л, интеграл вида

,

где g простая замкнутая спрямляемая кривая в комплексной плоскости и f (t) — функция комплексного переменного t, аналитическая на g и внутри g. Если точка z лежит внутри g, то К. и. равен f (z), т. о., любая аналитическая функция может быть посредством К. и. выражена через свои значения на замкнутом контуре. К. и. впервые рассмотрен О. Коши (1831).

Обобщением К. и. являются интегралы типа Коши; они имеют тот же вид, но кривая g не предполагается замкнутой и функция f (t) не предполагается аналитической. Такие интегралы по-прежнему определяют аналитические функции; их значения на g отличаются, вообще говоря, от функции f (t). Систематическое изучение их было начато Ю. В. Сохоцким и впоследствии продолжалось главным образом русскими и советскими математиками (Ю. Г. Колосов, В. В. Голубев, И. И. Привалов, Н. И. Мусхелишвили) как в направлении дальнейших обобщений, так и для приложения к вопросам механики.

Лит.: Маркушевич А. И., Теория аналитических функций, 2 изд., т. 1—2, М., 1967—68; Привалов И. И., Граничные свойства аналитических функций, 2 изд., М.— Л., 1950.

Коши неравенство

Коши' нера'венство, неравенство для конечных сумм, имеющее вид:

.

Одно из важнейших и наиболее употребительных неравенств. Доказано О. Коши (1821). Интегральный аналог К. н. установлен русским математиком В. Я. Буняковским (см. Буняковского неравенство ), интересное обобщение К. н. сделано немецким математиком О. Гёльдером (см. Гёльдера неравенство ).

Поделиться:
Популярные книги

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Найденыш

Шмаков Алексей Семенович
2. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Найденыш

Отверженный VII: Долг

Опсокополос Алексис
7. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VII: Долг

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Сумман твоего сердца

Арниева Юлия
Фантастика:
фэнтези
5.60
рейтинг книги
Сумман твоего сердца

Инверсия праймери. Укротить молнию

Азаро Кэтрин
Золотая библиотека фантастики
Фантастика:
космическая фантастика
6.40
рейтинг книги
Инверсия праймери. Укротить молнию

Плохая невеста

Шторм Елена
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Плохая невеста

Черный дембель. Часть 5

Федин Андрей Анатольевич
5. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 5

Энциклопедия лекарственных растений. Том 1.

Лавренова Галина Владимировна
Научно-образовательная:
медицина
7.50
рейтинг книги
Энциклопедия лекарственных растений. Том 1.

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Инквизитор Тьмы 5

Шмаков Алексей Семенович
5. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 5

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка