Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (КР)
Шрифт:

где l1,..., ln произвольные действительные параметры, а k и k1 — фиксированные отличные от нуля числа одинакового знака.

При требовании достаточной гладкости коэффициентов операторов D и В и равномерной эллиптичности оператора D справедливы следующие утверждения: 1) число k линейно независимых решений однородной задачи Дирихле (Неймана) конечно; 2) для разрешимости задачи Дирихле (Неймана) необходимо и достаточно, чтобы функции F (x) и f (y) были

подчинены дополнительным ограничениям типа условий ортогональности, число которых равно k; 3) при соблюдении условия

С (x) lb 0, x ^I G,

задача Дирихле всегда имеет и притом единственное решение; 4) в области G достаточно малого диаметра задача Дирихле всегда имеет и притом единственное решение и 5) при однозначной разрешимости задачи Дирихле (Неймана) малое изменение краевых данных вызывает малое изменение решения (т. е. решение устойчиво).

Когда D представляет собой оператор Лапласа

, решение задачи Дирихле в ограниченной области с достаточно гладкой границей всегда существует и единственно, причём для некоторых областей частного вида оно выписывается в явном виде. Так, например, при n = 1 в интервале —1 < х < 1 это решение имеет вид

u (х) =

,

где f1= u (1), f2 = u (1), а при n = 2 и n = 3, соответственно, в круге |x| < 1 и шаре |x| < 1

,

,

где |х—у| расстояние между точками х и у. Линейную К. з. называют фредгольмовой, если для неё имеют место сформулированные выше утверждения 1) — 5).

В К. з. для эллиптических уравнений обычно предполагается, что носителем краевого условия является вся граница S области G.

Если условие (6) равномерной эллиптичности не удовлетворено, но оператор D является эллиптическим в том смысле, что квадратичная форма

в области D положительно (или отрицательно) определена, то иногда для сохранения фредгольмовости К. з. вполне определённую часть границы S области G следует освободить от краевых данных.

Линейная К. з. даже при требовании равномерной эллиптичности дифференциального оператора D, вообще говоря, не является фредгольмовой. В частности, задача наклонной производной может не оказаться фредгольмовой, если вектор (a1..., an) в некоторых точках границы S лежит в касательной к S плоскости.

Когда дифференциальный оператор D не является эллиптическим, К. з. (4), (5) может вовсе не иметь содержательного смысла, если часть границы S области G не освободить от краевых данных и на структуру носителя краевых данных не наложить определённые (порой весьма сильные) ограничения. Так, например, уравнение теплопроводности

,

являющееся типичным представителем уравнений параболического

типа, в квадрате, ограниченном прямыми: x1= , x1 = 1, x2 = , x2 = 1, имеет единственное решение u (x1, x2), удовлетворяющее краевым условиям:

u (0, x2) = f (x2), 0 lb x2 lb 1

u (x1,0) = j(x1), 0 lb x1 lb 1

u (1, x2) = y(x2), 0 lb x2 lb 1

f (0) = j(0), y(0) = j(1)

при произвольных достаточно гладких данных f, j. y. Следовательно, краевое условие u (x1,1) = q(x1), lb x1 lb 1, уже нельзя задавать произвольно. Точно так же рассмотренное выше простейшее уравнение гиперболического типа (1) в квадрате, ограниченном прямыми: x1 + x2 = 0, x1– x2 = 0, x1 + x2 = 1, x1– x2 = —1, имеет единственное решение u (x1, x2), удовлетворяющее краевым условиям:

u (x1, x1) = f (x1), lb x1lb 1/2

u (x1,-x1) = j(x1), 1/2 lb x1lb

f (0) = j(0)

при произвольных достаточно гладких данных f и j. Очевидно, что в рассмотренном случае краевые значения u (x1,1+x1), 1/2 lb x1 lb 0, и u (х1, 1-x1), 0 lb x1lb 1/2, не могут быть заданы произвольно.

Поделиться:
Популярные книги

Страж Кодекса. Книга VI

Романов Илья Николаевич
6. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга VI

Агенты ВКС

Вайс Александр
3. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Агенты ВКС

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Глубокий космос

Вайс Александр
9. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
космоопера
5.00
рейтинг книги
Глубокий космос

Магнат

Шимохин Дмитрий
4. Подкидыш
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Магнат

Тринадцатый VIII

NikL
8. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый VIII

Адепт

Листратов Валерий
4. Ушедший Род
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Адепт

Законы рода

Андрей Мельник
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Совершенный: охота

Vector
3. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: охота

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Имя нам Легион. Том 12

Дорничев Дмитрий
12. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 12

Шайтан Иван

Тен Эдуард
1. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван

Внешники такие разные

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники такие разные

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI