Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (КВ)
Шрифт:

подчиняющимся Бозе — Эйнштейна статистике.

В квантовой теории состояние системы частиц описывается волновой функцией или вектором состояния. Введём для описания состояния с N частицами вектор состояния YN; квадрат модуля YN, |YN|2, определяющий вероятность обнаружения N частиц, обращается, очевидно, в 1, если N достоверно известно. Это означает, что вектор состояния с любым фиксированным N нормирован на 1. Введём теперь оператор уничтожения частицы а и оператор рождения частицы а+. По определению, а

переводит состояние с N частицами в состояние с N—1 частицей, т. е.

(3)

Аналогично, оператор порождения частицы а+ переводит состояние YN в состояние с N + 1 частицей:

, (4)

[множители

 в (3) и
 в (4) вводятся именно для выполнения условия нормировки: |YN|2= 1]. В частности, при N = 0 а+Y = Y1 , где Y вектор состояния, характеризующий вакуум; т. е. одночастичное состояние получается в результате порождения из «вакуума» одной частицы. Однако аY = 0, поскольку невозможно уничтожить частицу в состоянии, в котором частиц нет; это равенство можно считать определением вакуума. Вакуумное состояние Y имеет в К. т. п. особое значение, т.к. из него при помощи операторов а+ можно получить любое состояние. Действительно, в рассматриваемом случае (когда состояние всей системы определяется только числом частиц)

,

, (5)

……………………………………

Легко показать, что порядок действия операторов а и а+ не безразличен. Действительно, а+Y) = аY1 = Y, в то время как а+Y) = 0 . Т. о., (aa+ — a+a)Y = Y, или

aa+—a+a = 1, (6)

т. е. операторы а+ и аявляются непереставимыми (некоммутирующими). Соотношения типа (6), устанавливающие связь между действием двух операторов, взятых в различном порядке называется перестановочными соотношениями, или коммутационными соотношениями для этих операторов, а выражения вида

 — коммутаторами операторов
 и
.

Если учесть, что частицы могут находиться в различных состояниях, то, записывая операторы порождения и уничтожения, надо дополнительно указывать, к какому состоянию частицы эти операторы относятся. В квантовой теории состояния задаются набором квантовых чисел, определяющих энергию, спин и др. физические величины; для простоты обозначим всю совокупность квантовых чисел одним индексом n: так, а+n обозначает оператор рождения частицы в состоянии с набором квантовых чисел n. Средние числа частиц, находящихся в состояниях, соответствующих различным n, называются числами заполнения этих состояний.

Рассмотрим выражение an а+mY. Сначала на Y действует «ближайший» к нему оператор а+m; это отвечает порождению частицы в состоянии m. Если n = m, то последующее действие оператора аn приводит опять к Y, т. е. аn а+nY0 = Y. Если n ¹ m, то аnа+mY0 = 0, поскольку невозможно уничтожение таких частиц, которых нет (оператор аn описывает уничтожение частиц в таких состояниях n, каких не возникает при действии a+n на Y ). С учетом различных состоянии частиц перестановочные соотношения для операторов рождения и уничтожения имеют следующий вид:

аnаm —аm аn = 0,

а+nа+m—а+m а+n = 0 (7)

Однако существуют поля, для которых связь между произведением операторов рождения и уничтожения, взятых в различном порядке, имеет др. вид: знак минус в (7) заменяется на плюс (это называется заменой коммутаторов на антикоммутаторы),

(8)

аnаm —аm аn = 0, а+nа+m—а+m а+n = 0

Поделиться:
Популярные книги

Бастард Императора. Том 6

Орлов Андрей Юрьевич
6. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 6

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Законы Рода. Том 7

Андрей Мельник
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Хозяйка расцветающего поместья

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Хозяйка расцветающего поместья

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Черный дембель. Часть 3

Федин Андрей Анатольевич
3. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 3

Маленькая хозяйка большого герцогства

Вера Виктория
2. Герцогиня
Любовные романы:
любовно-фантастические романы
7.80
рейтинг книги
Маленькая хозяйка большого герцогства

Диво

Загребельный Павел Архипович
5. Українська класика
Приключения:
исторические приключения
8.58
рейтинг книги
Диво

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование