Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ЛИ)
Шрифт:

Илл. к ст. Линии тока.

Линий движения способ

Ли'ний движе'ния спо'соб, один из картографических способов изображения. Л. д. с. применяется для изображения пути перемещения объектов и явлений (например, морских течений, перелётов птиц, маршрутов путешествий, перевозок грузов и т. п.), а также для указания политико-экономических связей, зависимостей и воздействий (например, направлений экспорта и импорта товаров, планов военных операций и др.).

Линименты

Линиме'нты (лат., ед. ч. linimentum, от linio — мажу, натираю), одна из лекарственных форм; жидкие лечебные мази, плавящиеся

при температуре тела. Втирают в кожу или наносят на пораженные места.

Линицкая Любовь Павловна

Лини'цкая (по мужу — Загорская) Любовь Павловна (27.12.1866, слобода Преображенская, ныне Васильковского района Днепропетровской области, — 5.2.1924, Киев), украинская советская актриса. Сценическую деятельность начала в 1886. Работала в труппах Н. К. Садовского, в товариществе под руководством И. А. Марьяненко и др. Игра Л. отличалась героическим пафосом и одновременно психологичской глубиной. Роли: Маруся Богуславка, Свиридиха, («Маруся Богуславка», «Оборона Буши» Старицкого), Татьяна, Варька («Бондаривна», «Бесталанная» Карпенко-Карого), Наталья («Лымеривна» Мирного) и др. Разоблачительной остротой отмечены комедийные роли — Проня Прокоповна («За двумя зайцами» Старицкого) и др.

Лит.: Любов Павлiвна Лiницька. Нариси, Київ, 1957.

Линия апсид

Ли'ния апси'д в астрономии, отрезок прямой, соединяющий апсиды, т. е. две точки эллиптической орбиты небесного тела: наиболее близкую к центральному телу и наиболее удалённую от него. Эти точки лежат на концах большой оси эллипса, которая, следовательно, и есть Л. а. В орбитах планет Солнечной системы Л. а. ограничены перигелием и афелием, в орбитах Луны и искусственных спутников Земли — перигеем и апогеем, в орбитах двойных звёзд — пернастром и апоастром.

Линия (в генетике)

Ли'ния в генетике, размножающиеся половым путём родственные организмы, которые происходят, как правило, от одного предка или одной пары общих предков и воспроизводят в ряду поколений одни и те же наследственно устойчивые признаки. Характерные для Л. признаки искусственно поддерживаются путём отбора и близкородственного скрещивания. Различают чистые линии — генотипически однородное потомство самоопыляющихся растений, у которых почти все гены находятся в гомозиготном состоянии, и инбредные Л. — потомство перекрёстноопыляющегося растения, полученное путем принудительного самоопыления, или группа животных, полученная при близкородственном разведении (см. Инбридинг). Чем теснее родство родителей, тем выше степень гомозиготности потомства. И в чистых, и в инбредных Л. постоянно возникающие мутации нарушают гомозиготность. Поэтому для сохранения гомозиготности по генам, определяющим основные свойства Л., необходимо вести отбор. В животноводстве различают генеалогическую Л., т. е. группу животных, происходящую от общего предка, и заводскую Л. — однородную, качественно своеобразную, поддерживаемую отбором и подбором с использованием инбридинга группу высокопродуктивных животных, происходящую от выдающегося родоначальника и схожую с ним по конституции и продуктивности (см. Разведение по линиям). Чистые и инбредные Л. служат основой для получения высокопродуктивных гибридов в растениеводстве и животноводстве. В медико-биологических исследованиях важную роль играют Л. лабораторных животных, сохраняющие константность по определённым признакам.

Лит.: Иогансен В. Л., О наследовании в популяциях и чистых линиях, пер. с нем., М. — Л., 1935; Медведев Н. Н., Практическая генетика, М., 1966.

Ю. С. Демин, Е. Я. Борисенко.

Линия (геометрич. понятие)

Ли'ния (от лат. linea), геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно.

1) В элементарной геометрии рассматриваются прямые Л., отрезки прямых, ломаные Л., составленные из отрезков, и некоторые кривые Л. Каждый вид кривых Л. определяется тем или иным специальным способом (например, окружность определяется как геометрическое место точек, имеющих заданное расстояние R от заданной точки О — центра окружности). Иногда в учебниках дают определение Л. как границы

куска поверхности (поверхность определяется при этом как граница тела) или как траектории движущейся точки. Но в рамках элементарной геометрии эти определения не получают отчётливой формулировки.

2) Представление о Л. как траектории движущейся точки может быть сделано вполне строгим при помощи идеи параметрического представления Л. Например, вводя на плоскости прямоугольные координаты (x, у), можно параметрически задать окружность радиуса R с центром в начале координат уравнениями

x = R cos t, y = R sin t.

Когда параметр t пробегает отрезок 0 lb t lb 2p, точка (х, у) описывает окружность. Вообще, Л. на плоскости задают параметрическими уравнениями вида

x = j (t), у =

(t),

где j (t),

(t) — произвольные функции, непрерывные на каком-нибудь конечном или бесконечном интервале D числовой оси t. С каждым значением параметра t (из интервала D) уравнения (*) сопоставляют некоторую точку M, координаты которой определяются этими уравнениями. Л., заданная параметрическими уравнениями (*) есть множество точек, соответствующих всевозможным значениям t из D, при условии, что эти точки рассматриваются в определенном порядке, именно: если точка M1 соответствует значению параметра t1, а точка M2 — значению t2, то M1 считается предшествующей M2, если t1 < t2 При этом точки, отвечающие различным значениям параметра, всегда считаются различными.

Аналогично, в трёхмерном пространстве Л. задаётся параметрически тремя уравнениями вида

x = j (t), у =

(t), z = c (t),

где j (t),

(t), c (t) — произвольные функции, непрерывные на каком-нибудь интервале. В произвольном топологическом пространствеТ (которое, в частности, может быть плоскостью, поверхностью, обычным трёхмерным пространством, функциональным пространством и т. п.) Л. параметрически задают уравнением вида

P = j (t),

где j — функция действительного переменного t, непрерывная на каком-либо интервале, значения которой суть точки пространства Т. Считают, что два параметрических представления задают одну и ту же Л., если они определяют один и тот же порядок следования её точек (в смысле, указанном выше).

В анализе и топологии рассматривают обычно случай, когда область изменения параметра t есть отрезок а lb t lb b. В этом случае условие того, чтобы два параметрических представления

Поделиться:
Популярные книги

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Рейдер 2. Бродяга

Поселягин Владимир Геннадьевич
2. Рейдер
Фантастика:
фэнтези
попаданцы
7.24
рейтинг книги
Рейдер 2. Бродяга

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Мама из другого мира. Чужих детей не бывает

Рыжая Ехидна
Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.79
рейтинг книги
Мама из другого мира. Чужих детей не бывает

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Запределье

Михайлов Дем Алексеевич
6. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.06
рейтинг книги
Запределье

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Бестужев. Служба Государевой Безопасности. Книга третья

Измайлов Сергей
3. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга третья

Час Презрения

Сапковский Анджей
4. Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Час Презрения