Большая Советская Энциклопедия (МА)
Шрифт:
Короче:
М., состоящая из одной строки, называется строкой, из одного столбца — столбцом. Если m = n , то М. называется квадратной, а число n —
Переставив в М. строки со столбцами, получают транспонированную М. A’ , или AT . Если элементы М. заменяют на комплексно-сопряжённые, получают комплексно-сопряжённую М. А. Если элементы транспонированной М. A’ заменяют на комплексно-сопряжённые, то получают М. А *, называется сопряжённой с А . Определитель квадратной М. А обозначается ½A ½ или det A . Минором k– го порядка М. А называется определитель k– го порядка, составленный из элементов, находящихся на пересечении некоторых k строк и k столбцов М. A в их естественном расположении. Рангом М. А называется максимальный порядок отличных от нуля миноров матрицы.
Действия над матрицами. Произведением прямоугольной (m ' n )-матрицы А на число ее называют М., элементы которой получены из элементов aij умножением на число a:
Сумма определяется для прямоугольных М. одинакового строения, и элементы суммы равны суммам соответствующих слагаемых, то есть
Умножение М. определяется только для прямоугольных М. таких, что число столбцов первого множителя равно числу строк второго. Произведением (m ' р )-матрицы А на (р ' n )-матрицу В будет (m ' n )-матрица С с элементами
cij = ai1 b1j + ai2 b2j + ... + aip bpj ,
i = 1, ..., m , j = 1, ..., n .
Введённые три действия над М. обладают свойствами, близкими к свойствам действий над числами. Исключением является отсутствие коммутативного закона при умножении М.: равенство AB = BA может не выполняться. Матрицы А и В называются перестановочными, если AB = BA . Кроме того, произведение двух М. может равняться нулевой М., хотя каждый сомножитель отличен от нулевой. Справедливы правила:
Часто удобно разбивать М. на клетки, являющиеся М. меньших размеров, проводя разделительные линии через всю М. слева направо или сверху вниз. При умножении такой так называемой клеточной М. на число, нужно умножить все её клетки на то же число. При надлежащем согласовании разбиений действия сложения и умножения клеточных М. осуществляются так, как будто вместо клеток стоят числа.
Квадратная М. А = (aij ) называется неособенной, или невырожденной, если её определитель не равен нулю; в противном случае М. называется особенной (вырожденной). М. А– 1 называется обратной к квадратной М. А , если AA– 1 = E , при этом
Большой интерес приобретает обобщённая обратная (или псевдообратная) М. А+ , определяемая как для любой прямоугольной М., так и для особенной квадратной. Эта М. определяется из четырёх равенств:
AA+A = A , А+АА+ = А , AA+ = (AA+ )*, А+А = (А+А )*.
Квадратные матрицы. Степенью An М. А называется произведение n сомножителей, равных А . Выражение вида aАn + a1An-1 + ... + anE , где a , a1 , ..., an — числа, называется значением полинома atn + aitn-1 + ... + anE от квадратной М. А . Правила действий над полиномами от данной М. А ничем не отличаются от правил действий над алгебраическими многочленами. Можно рассматривать и аналитические функции от М. В частности, если
есть сходящийся на всей комплексной плоскости ряд (например,