Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (МА)
Шрифт:

П. Я. Розенфельд.

Матричные игры

Ма'тричные и'гры , понятие игр теории . М. и. — игры, в которых участвуют два игрока (I и II) с противоположными интересами, причём каждый игрок имеет конечное число чистых стратегий . Если игрок I имеет m стратегий, а игрок II — n стратегий, то игра может быть задана (m ' n )-maтрицей А = ||aij ||, где aij есть выигрыш игрока I, если он выберет стратегию i (i = -1, ..., m ), а игрок II — стратегию j (j = 1, ..., n ).

Следуя общим принципам поведения в антагонистических играх (частным случаем которых являются М. и.), игрок I стремится выбрать такую стратегию i , на которой достигается

;

игрок II стремится выбрать стратегию jo , на которой достигается

;

Если u1 = u2 , то пара (i , j ) составляет седловую точку игры, то есть выполняется двойное неравенство

; i = 1, …, m ; j = 1, …, n .

Число

 называется значением игры; стратегии i , j называются оптимальным и чистыми стратегиями игроков I и II соответственно. Если u1 &sup1; u2 , то всегда u1 < u2 ; в этом случае в игре седловой точки нет, а оптимальные стратегии игроков следует искать среди их смешанных стратегий (то есть вероятностных распределений на множестве чистых стратегий). В этом случае игроки оперируют уже с математическими ожиданиями выигрышей.

Основная теорема теории М. и. (теорема Неймана о минимаксе) утверждает, что в любой М. и. существуют оптимальные смешанные стратегии х* , у* , на которых достигаемые «минимаксы» равны (общее их значение есть значение игры). Например, игра с матрицей

 имеет седловую точку при i = 2, j = 1, а значение игры равно 2; игра с матрицей
 не имеет седловой точки. Для неё оптимальные смешанные стратегии суть х* = (3 /4 , 1 /4 ), y* = (1 /2 , 1 /2 ); значение игры равно 1 /2 .

Для фактического нахождения оптимальных смешанных стратегий чаще всего используют возможность сведения М. и. к задачам линейного программирования . Можно использовать так называемый итеративный метод Брауна — Робинсон, состоящий в последовательном фиктивном «разыгрывании» данной игры с выбором игроками в каждой данной партии своих чистых стратегий, наилучших против накопленных к этому моменту стратегий оппонента. Игры, в которых один из игроков имеет только две стратегии, просто решить графически.

М. и. могут служить математическими моделями многих простейших конфликтных ситуаций из области экономики, математической статистики, военного дела, биологии. Нередко в качестве одного из игроков рассматривают «природу», под которой понимается вся совокупность внешних обстоятельств, неизвестных принимающему решения лицу (другому игроку).

Лит.: Матричные игры. [Сборник переводов], под редакцией Н. Н. Воробьева, М., 1961; Нейман Дж. фон, Моргенштерн О., Теория игр и экономическое поведение, перевод с английского, М., 1970; Оуэн Г., Теория игр, перевод с английского, М., 1971.

А. А. Корбут.

Матричные модели

Матричные модели в экономике, один из

наиболее распространённых типов экономико-математических моделей. Представляют собой прямоугольные таблицы (матрицы ), элементы которых отражают взаимосвязи экономических объектов и обладают определённым экономическим смыслом, значение которого вычисляется по установленным в теории матриц правилам. В М. м. отражается структура затрат на производство и распределение продукции и вновь созданной стоимости.

М. м. — балансово-нормативные, они объединяют в единой табличной форме балансы распределения продукции (по отдельным её видам) и увязанные с ними балансы затрат на её производство, а также нормативы материальных и денежных затрат. М. м. используются для экономического анализа и плановых расчётов с применением электронной вычислительной техники.

Представленная в графическом виде (см. схему) М. м. экономического объекта имеет вид прямоугольной таблицы, разделённой на 4 четверти (квадранта). Уравнения строк матрицы

, где элементы строки xij — поставка продукции подразделения (отрасли) i в подразделение (отрасль) j , Yi — конечная продукция подразделения (отрасли) i , Xi — валовая продукция подразделения (отрасли) i , представляют собой балансы распределения продукции, произведённой в различных производственных подразделениях (например, в цехах предприятия), в различных экономических объектах (предприятиях, объединениях), в разных отраслях народного хозяйства. Они имеют совершенно очевидный экономический смысл: сумма внутрипроизводственных поставок и конечного продукта составляет валовой выпуск подразделения (отрасли). Столь же очевиден смысл уравнения, составленного из элементов столбцов матрицы:
, где xij — затраты продукции подразделения (отрасли) j на производство продукции подразделения (отрасли) i , Zj — затраты первичных ресурсов и вновь созданная стоимость в подразделении (отрасли); X’j — валовые затраты в сумме со вновь созданной стоимостью в подразделении (отрасли) j ,

Xi = X’j , если i тождественно j ; тогда в этом равенстве итогов одноимённых строк и столбцов находит выражение закон стоимости: стоимость распределённых и накопленных благ и услуг равна стоимости производственных затрат плюс вновь созданная стоимость. Из этого основного равенства М. м. вытекает целый ряд других производных уравнений, которые делают М. м. удобным расчётным плановым и аналитическим инструментом.

Таким образом, каждый показатель имеет двоякое значение: с одной стороны, он выражает объём поставок одного производственного подразделения (отрасли) в другое, с другой стороны — объём производственного потребления вторым подразделением продукции первого. I квадрант М. м. отражает, следовательно, внутрипроизводственные связи моделируемой экономической системы. Наиболее явное количественное выражение производственная структура получает в коэффициентах прямых затрат , которые представляют собой частное от деления объёмов затрат продукции всех подразделений на объём выпуска определённого подразделения:

. Тогда I квадрант М. м. приобретает смысл таблицы нормативов затрат, рассчитанных на единицу валового выпуска каждого вида продукции. В результате обращения инверсированной квадратной матрицы I квадранта получают коэффициенты полных затрат , выражающие совокупность прямых и косвенных затрат в расчёте на единицу конечного выпуска В = (E — А )– 1 . Во II квадранте отражаются результаты производственной и хозяйственной деятельности (конечная продукция); он рассматривается как выход модели. В III квадранте отражаются затраты первичных ресурсов, поступающих в систему извне, и вновь созданная стоимость (овеществленный труд); он рассматривается в качестве входа модели. В IV квадранте, где пересекаются строки III квадранта с колонками IV квадранта, отражаются, таким образом, транзитные процессы передачи материальных ресурсов и перераспределения стоимости: ресурсы, поступившие на вход данной экономической системы, используются в качестве конечных продуктов на выходе, минуя производственные подразделения.

Поделиться:
Популярные книги

Сила рода. Том 1 и Том 2

Вяч Павел
1. Претендент
Фантастика:
фэнтези
рпг
попаданцы
5.85
рейтинг книги
Сила рода. Том 1 и Том 2

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Как я строил магическую империю 3

Зубов Константин
3. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 3

Адвокат Империи 7

Карелин Сергей Витальевич
7. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 7

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Прометей: владыка моря

Рави Ивар
5. Прометей
Фантастика:
фэнтези
5.97
рейтинг книги
Прометей: владыка моря

Полное собрание сочинений в 15 томах. Том 1. Дневники - 1939

Чернышевский Николай Гаврилович
Чернышевский, Николай Гаврилович. Полное собрание сочинений в 15 томах
Проза:
русская классическая проза
5.00
рейтинг книги
Полное собрание сочинений в 15 томах. Том 1. Дневники - 1939

А небо по-прежнему голубое

Кэрри Блэк
Фантастика:
фэнтези
5.00
рейтинг книги
А небо по-прежнему голубое

Собрание сочинений В. К. Арсеньева в одной книге

Арсеньев Владимир Клавдиевич
5. Абсолют
Приключения:
исторические приключения
5.00
рейтинг книги
Собрание сочинений В. К. Арсеньева в одной книге

Чародеи. Пенталогия

Смирнов Андрей Владимирович
Фантастика:
фэнтези
7.95
рейтинг книги
Чародеи. Пенталогия

Попаданка. Финал

Ахминеева Нина
4. Двойная звезда
Фантастика:
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Попаданка. Финал

Блудное Солнце. Во Славу Солнца. Пришествие Мрака

Уильямс Шон
Эвердженс
Фантастика:
боевая фантастика
6.80
рейтинг книги
Блудное Солнце. Во Славу Солнца. Пришествие Мрака

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново