Большая Советская Энциклопедия (МА)
Шрифт:
П. Я. Розенфельд.
Матричные игры
Ма'тричные и'гры , понятие игр теории . М. и. — игры, в которых участвуют два игрока (I и II) с противоположными интересами, причём каждый игрок имеет конечное число чистых стратегий . Если игрок I имеет m стратегий, а игрок II — n стратегий, то игра может быть задана (m ' n )-maтрицей А = ||aij ||, где aij есть выигрыш игрока I, если он выберет стратегию i (i = -1, ..., m ), а игрок II — стратегию j (j = 1, ..., n ).
игрок II стремится выбрать стратегию jo , на которой достигается
Если u1 = u2 , то пара (i , j ) составляет седловую точку игры, то есть выполняется двойное неравенство
Число
Основная теорема теории М. и. (теорема Неймана о минимаксе) утверждает, что в любой М. и. существуют оптимальные смешанные стратегии х* , у* , на которых достигаемые «минимаксы» равны (общее их значение есть значение игры). Например, игра с матрицей
Для фактического нахождения оптимальных смешанных стратегий чаще всего используют возможность сведения М. и. к задачам линейного программирования . Можно использовать так называемый итеративный метод Брауна — Робинсон, состоящий в последовательном фиктивном «разыгрывании» данной игры с выбором игроками в каждой данной партии своих чистых стратегий, наилучших против накопленных к этому моменту стратегий оппонента. Игры, в которых один из игроков имеет только две стратегии, просто решить графически.
М. и. могут служить математическими моделями многих простейших конфликтных ситуаций из области экономики, математической статистики, военного дела, биологии. Нередко в качестве одного из игроков рассматривают «природу», под которой понимается вся совокупность внешних обстоятельств, неизвестных принимающему решения лицу (другому игроку).
Лит.: Матричные игры. [Сборник переводов], под редакцией Н. Н. Воробьева, М., 1961; Нейман Дж. фон, Моргенштерн О., Теория игр и экономическое поведение, перевод с английского, М., 1970; Оуэн Г., Теория игр, перевод с английского, М., 1971.
А. А. Корбут.
Матричные модели
Матричные модели в экономике, один из
М. м. — балансово-нормативные, они объединяют в единой табличной форме балансы распределения продукции (по отдельным её видам) и увязанные с ними балансы затрат на её производство, а также нормативы материальных и денежных затрат. М. м. используются для экономического анализа и плановых расчётов с применением электронной вычислительной техники.
Представленная в графическом виде (см. схему) М. м. экономического объекта имеет вид прямоугольной таблицы, разделённой на 4 четверти (квадранта). Уравнения строк матрицы
Xi = X’j , если i тождественно j ; тогда в этом равенстве итогов одноимённых строк и столбцов находит выражение закон стоимости: стоимость распределённых и накопленных благ и услуг равна стоимости производственных затрат плюс вновь созданная стоимость. Из этого основного равенства М. м. вытекает целый ряд других производных уравнений, которые делают М. м. удобным расчётным плановым и аналитическим инструментом.
Таким образом, каждый показатель имеет двоякое значение: с одной стороны, он выражает объём поставок одного производственного подразделения (отрасли) в другое, с другой стороны — объём производственного потребления вторым подразделением продукции первого. I квадрант М. м. отражает, следовательно, внутрипроизводственные связи моделируемой экономической системы. Наиболее явное количественное выражение производственная структура получает в коэффициентах прямых затрат , которые представляют собой частное от деления объёмов затрат продукции всех подразделений на объём выпуска определённого подразделения: