Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (МА)
Шрифт:

Межпланетное М. п. — это главным образом поле солнечного ветра (непрерывно расширяющейся плазмы солнечной короны). Вблизи орбиты Земли межпланетное поле ~ 10– 4 —10– 5гс. Силовые линии регулярного межпланетного М. п. имеют вид идущих от Солнца раскручивающихся спиралей (их форма обусловлена сложением радиального движения плазмы и вращения Солнца). М. п. межпланетной плазмы имеет секторную структуру: в одних секторах оно направлено от Солнца, в других — к Солнцу. Регулярность межпланетного М. п. может нарушаться из-за развития различных видов плазменной неустойчивости, прохождения ударных волн и распространения потоков быстрых частиц, рожденных солнечными вспышками (см. Космическая магнитогидродинамика ).

Во всех процессах на Солнце — вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей М. п. играет важнейшую роль (см. Солнечный магнетизм ). Измерения, основанные на эффекте Зеемана, показали, что М. п. солнечных пятен достигает нескольких тысяч гс,

протуберанцы удерживаются полями ~ 10—100 гс (при среднем значении общего М. п. Солнца ~ 1 гс ). Удалённость звёзд не позволяет пока наблюдать у них М. п. типа солнечных. В то же время более чем у двухсот так называемых магнитных звёзд обнаружены аномально большие поля (до 3,4·104гс ). Поля ~ 107 гс измерены у нескольких звёзд — белых карликов. Особенно большие (~ 1010 —1012гс ) М. п. должны быть, по современным представлениям, у нейтронных звёзд . С М. п. космических объектов тесно связано ускорение заряженных частиц (электронов протонов, ядер) до релятивистских скоростей (близких к скорости света). При движении таких частиц в космических М. п. возникает электромагнитное синхротронное излучение . Индукция межзвёздного М. п., определённая по Зеемана эффекту (в радиолинии 21 см спектра водорода) и по Фарадея эффекту (вращению плоскости поляризации электромагнитного излучения в М. п.), составляет всего ~ 5·10– 6 гс. Однако общая энергия межзвёздного (галактического) М. п. превышает энергию хаотического движения частиц межзвёздного газа и сравнима с энергией космических лучей.

В явлениях микромира роль М. п. столь же существенна, как и в космических масштабах. Это объясняется существованием у всех частиц — структурных элементов вещества (электронов, протонов, нейтронов) магнитного момента, а также действием М. п. на движущиеся электрические заряды. Если суммарный магнитный момент М частиц, образующих атом или молекулу, равен нулю, то такие атомы и молекулы называются диамагнитными. Атомы (ионы, молекулы) с М ¹ 0 называются парамагнитными. У всех атомов (как с М = 0, так и с М ¹ 0) при наложении внешнего М. п. возникает индуцированный магнитный момент, направленный навстречу намагничивающему полю (см. Диамагнетизм ). Однако у парамагнитных атомов в М. п. этот эффект маскируется преимущественным поворотом их магнитных моментов по полю (см. Парамагнетизм ). У парамагнетиков и ферромагнетиков намагниченность увеличивается с ростом внешнего М. п. (до состояния насыщения). Вид кривых намагничивания ферромагнетиков (и антиферромагнетиков) в значительной степени определяется магнитным взаимодействием атомных носителей магнетизма. Это взаимодействие обусловливает также большое разнообразие типов атомной магнитной структуры у ферримагнетиков (ферритов ).

Внутрикристаллическое М. п., измеренное в ферримагнетиках (ферритах-гранатах) на ядрах ионов железа, оказалось ~ 5·105гс, на ядрах редкоземельного металла диспрозия ~ 8·106гс. На расстоянии порядка размера атома (~ 10– 8см ) М. п. ядра составляет ~ 50 гс. Внешнее М. п. и внутриатомные М. п., создаваемые электронами атома и его ядром, расщепляют энергетические уровни атома (Зеемана эффект); в результате спектры атомов приобретают сложное строение (см. Тонкая структура и Сверхтонкая структура ). Расстояния между зеемановскими подуровнями энергии (и соответствующими спектральными линиями) пропорциональны величине М. п., что позволяет спектральными методами определять значение М. п. С возникновением зеемановских подуровней энергии в М. п. и с квантовыми переходами между ними связано ещё одно важное физическое явление — резонансное поглощение веществом радиоволн (явление магнитного резонанса ). Зависимость положения и формы линий спектра магнитного резонанса от особенностей взаимодействия молекул, атомов, ионов, а также ядер в жидкостях и твёрдых телах даёт возможность исследовать при помощи электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР) структуру жидкостей, кристаллов и сложных молекул, кинетику химических и биохимических реакций.

М. п. способно заметно влиять на оптические свойства среды и процессы взаимодействия электромагнитного излучения с веществом (см. Фарадея эффект , Магнитооптика ), вызывать гальваномагнитные явления и термомагнитные явления в проводниках и полупроводниках. М. п. оказывает влияние на сверхпроводимость веществ: при достижении определённой величины М. п. разрушает сверхпроводимость (см. Критическое магнитное поле ). М. п. при намагничивании ферромагнитных тел изменяет их форму и упругие свойства (см. Магнитострикция ).

Особые свойства в М. п. приобретает плазма . М. п. препятствует движению заряженных частиц плазмы поперёк силовых линий поля (см. Магнитная гидродинамика ). Этот эффект используется, например, для термоизоляции плазмы и обеспечения её устойчивости в установках для изучения свойств высокотемпературной плазмы.

Применение магнитных полей в науке и технике. М. п. обычно подразделяют на слабые (до 500 гс ), средние (500 гс — 40 кгс ), сильные (40 кгс — 1 Мгс ) и сверхсильные (свыше 1 Мгс ). На использовании слабых и средних М. п. основана практически вся электротехника, радиотехника и электроника. В научных исследованиях средние М. п. нашли применение в ускорителях заряженных частиц , в Вильсона камере , искровой камере , пузырьковой камере и других трековых детекторах ионизующих частиц, в масс-спектрометра х, при изучении действия М. п. на живые организмы и т.д. Слабые и средние М. п. получают при помощи магнитов постоянных , электромагнитов, неохлаждаемых соленоидов, магнитов сверхпроводящих .

М. п. до ~500 кгс широко применяются в научных и прикладных целях: в физике твёрдого тела для изучения энергетических спектров электронов в металлах, полупроводниках и сверхпроводниках; для исследования ферро- и антиферромагнетизма, для удержания плазмы в МГД-генераторах и двигателях, для получения сверхнизких температур (см. Магнитное охлаждение ), в электронных микроскопах для фокусировки пучков электронов и т.д. Для получения сильных М. п. применяют сверхпроводящие соленоиды (до 150—200 кгс , рис. 2 ), соленоиды, охлаждаемые водой (до 250 кгс , рис. 3 ), импульсные соленоиды (до 1,6 Мгс , рис. 4 ). Силы, действующие на проводники с током в сильных М. п., могут быть очень велики (так, в полях ~ 250 кгс механические напряжения достигают 4·108 н/м2 , то есть предела прочности меди). Эффект давления М. п. учитывают при конструировании электромагнитов и соленоидов, его используют для штамповки изделий из металла. Предельное значение поля, которое можно получить без разрушения соленоида, не превышает 0,9 Мгс.

Сверхсильные М. п. используют для получения данных о свойствах веществ в полях свыше 1 Мгс и при сопутствующих им давлениях в десятки млн. атмосфер. Эти исследования позволят, в частности, глубже понять процессы, происходящие в недрах планет и звёзд. Сверхсильные М. п. получают методом направленного взрыва (рис. 5 ). Медную трубу, внутри которой предварительно создано сильное импульсное М. п., радиально сжимают давлением продуктов взрыва. С уменьшением радиуса R трубы величина М. п. в ней возрастает ~ 1/R2 (если магнитный поток через трубу сохраняется). М. п., получаемое в установках подобного типа (так называемых взрывомагнитных генераторах), может достигать нескольких десятков Мгс. К недостаткам этого метода следует отнести кратковременность существования М. п. (несколько мксек ), небольшой объём сверхсильного М, п. и разрушение установки при взрыве.

Лит.: Ландау Л. Д. и Лифшиц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Парселл Э., Электричество и магнетизм, перевод с английского, М., 1971 (Берклеевский курс физики, т. 2); Карасик В. Р., Физика и техника сильных магнитных полей, М., 1964; Монтгомери Б., Получение сильных магнитных полей с помощью соленоидов, перевод с английского, М., 1971; Кнопфель Г., Сверхсильные импульсные магнитные поля, перевод с английского, М., 1972; Кольм Г., Фриман А., Сильные магнитные поля, «Успехи физических наук», 1966, т. 88, в. 4, с. 703; Сахаров А. Д., Взрывомагнитные генераторы, там же, с. 725; Биттер Ф., Сверхсильные магнитные поля, там же, с. 735; Вайнштейн С. И., Зельдович Я. Б., О происхождении магнитных полей в астрофизике, там же, 1972, т. 106, в. 3.

Л. Г. Асламазов, В. Р. Карасик, С. Б. Пикельнер.

Рис. 4. Модель импульсного одновиткового соленоида (длина 10 мм , диаметр отверстия 2 мм ). Источник питания — батарея конденсаторов на 2,4 кдж . Получаемые поля — до 1,6 Мгс .

Рис. 3. Схематический разрез водоохлаждаемого соленоида на 250 кгс (движение воды показано стрелками), 1-я секция имеет массу 2 кг , потребляет мощность 0,4 Мвт и создаёт поле Bmax ~ 45 кгс , 2-я секция — 16 кг, 2 Мвт и 65 кгс , 3-я секция — 1250 кг , 12 Мвт и 140 кгс .

Поделиться:
Популярные книги

Пророк, огонь и роза. Ищущие

Вансайрес
Фантастика:
фэнтези
5.00
рейтинг книги
Пророк, огонь и роза. Ищущие

Собрание сочинений В. К. Арсеньева в одной книге

Арсеньев Владимир Клавдиевич
5. Абсолют
Приключения:
исторические приключения
5.00
рейтинг книги
Собрание сочинений В. К. Арсеньева в одной книге

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Эволюционер из трущоб. Том 3

Панарин Антон
3. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
6.00
рейтинг книги
Эволюционер из трущоб. Том 3

Всемирная энциклопедия афоризмов. Собрание мудрости всех народов и времен

Агеева Елена А.
Документальная литература:
публицистика
5.40
рейтинг книги
Всемирная энциклопедия афоризмов. Собрание мудрости всех народов и времен

Как притвориться идеальным мужчиной

Арсентьева Александра
Дом и Семья:
образовательная литература
5.17
рейтинг книги
Как притвориться идеальным мужчиной

Законы Рода. Том 6

Андрей Мельник
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Гранд империи

Земляной Андрей Борисович
3. Страж
Фантастика:
фэнтези
попаданцы
альтернативная история
5.60
рейтинг книги
Гранд империи

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Босс Мэн

Киланд Ви
Любовные романы:
современные любовные романы
8.97
рейтинг книги
Босс Мэн

Правильный попаданец

Дашко Дмитрий Николаевич
1. Мент
Фантастика:
альтернативная история
5.75
рейтинг книги
Правильный попаданец

Неправильный боец РККА Забабашкин 3

Арх Максим
3. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный боец РККА Забабашкин 3

Виктор Глухов агент Ада. Компиляция. Книги 1-15

Сухинин Владимир Александрович
Виктор Глухов агент Ада
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Виктор Глухов агент Ада. Компиляция. Книги 1-15