Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (МА)
Шрифт:

Магнитную структуру ферромагнитных и антиферромагнитных веществ исследуют с помощью нейтронографического метода, основанного на явлении магнитного рассеяния нейтронов, возникающего в результате взаимодействия магнитного момента нейтрона с магнитными моментами частиц вещества (см. Нейтронография ).

Резонансные методы исследования включают все виды магнитного резонанса — резонансного поглощения энергии переменного электромагнитного поля электронной или ядерной подсистемой вещества. Эти подсистемы, кроме электромагнитной энергии, могут резонансно поглощать энергию звуковых колебаний — так называемый магнетоакустический парамагнитный резонанс, который также применяют в М. и.

Важную область М. и. составляют измерения характеристик магнитных материалов (ферритов , магнитодиэлектриков и др.) в переменных магнитных полях повышенной и высокой частоты (от 10 кгц до 200 Мгц ). Для этой цели применяют в основном

ваттметровый, мостовой и резонансный методы. Измеряют обычно потери на перемагничивание, коэффициент потерь на гистерезис и вихревые токи, компоненты комплексной магнитной проницаемости. Измерения осуществляют при помощи пермеаметра , аппарата Эпштейна, феррометра и других устройств, позволяющих определять частотные характеристики материалов.

Существуют и другие методы определения магнитных характеристик (магнитооптический, в импульсном режиме перемагничивания, осциллографический, метод вольтметра и амперметра и другие), позволяющие исследовать ряд важных свойств магнитных материалов.

Приборы для М. и. классифицируют по их назначению, условиям применения, по принципу действия чувствительного элемента (датчика, или преобразователя). Приборы для измерения напряжённости поля, индукции и магнитного момента обычно называют магнитометрами , для измерения магнитного потока — флюксметрами или веберметрами; потенциала поля — магнитными потенциалометрами , градиента — градиентометрами; коэрцитивной силы — коэрцитиметрами и так далее. В соответствии с классификацией методов М. и. различают приборы, основанные на явлении электромагнитной индукции, гальваномагнитных явлениях , на силовом (пондеромоторном) действии поля, на изменении оптических, механических, магнитных и других свойств материалов под действием магнитного поля (см., например, Феррозонд ), на специфических квантовых явлениях (см. Квантовый магнитометр ). Единая классификация приборов для М. и. не разработана.

Лит.: Электрические измерения. Средства и методы измерений (общий курс), под редакцией Е. Г. Шрамкова, М., 1972; Кифер И. И., Пантюшин В. С., Испытания ферромагнитных материалов, М. — Л., 1955; Чечерников В. И., Магнитные измерения, 2 изд., М., 1969; ГОСТ 12635-67. Методы испытаний в диапазоне частот от 10 кгц до 1 Мгц, ГОСТ 12636-67. Методы испытаний в диапазоне частот от 1 до 200 Мгц.

В. И. Чечерников.

Магнитные карты

Магни'тные ка'рты, карты земной поверхности, на которых при помощи изолиний (изодинам , изогон , изоклин ) показано распределение напряжённости геомагнитного поля или её составляющих. Наиболее распространены мировые М. к. и карты аномального магнитного поля. Мировые карты отражают основные особенности главного геомагнитного поля (нормального поля), источником которого считают движение электропроводящего вещества земного ядра (см. Земной магнетизм ). Размеры структурных особенностей главного поля близки к размерам континентов, поэтому обычный масштаб мировых карт 1: 10 000 000 или мельче. На мировых М. к. сглажены отклонения, обусловленные неоднородностями строения земной коры, залеганием рудных месторождений и другими местными факторами. Карты аномального магнитного поля отражают местные отклонения геомагнитного поля от главного поля. Эти отклонения наблюдаются, как правило, на площадях с линейными размерами порядка десятков км и менее. Поэтому М. к. аномального поля имеют более крупный масштаб (например, 1: 200 000); эти карты обычно составляют по результатам аэромагнитной съёмки . М. к. необходимы для изучения строения земных недр, поиска полезных ископаемых и решения ряда других задач. Вследствие векового хода магнитного поля Земли М. к. стареют, поэтому их периодически, через 5—10 лет, пересоставляют.

Лит.: Яновский Б. М., Земной магнетизм, [3 изд.], т. 1, Л., 1964.

В. Н. Луговенко.

Магнитные линзы

Магни'тные ли'нзы , устройства для создания магнитных полей, обладающих определённой симметрией; служат для фокусировки пучков заряженных частиц. Подробнее см. в статье Электронные линзы .

Магнитные ловушки

Магни'тные лову'шки, конфигурации магнитного поля , способные длительное время удерживать заряженные частицы внутри определённого объёма пространства. М. л. природного происхождения является магнитное поле Земли; огромное число захваченных и удерживаемых им космических заряженных частиц высоких энергий (электронов и протонов) образует радиационные пояса Земли за пределами её атмосферы В лабораторных условиях М. л. различных видов исследуют главным образом применительно к проблеме удержания смеси большого числа положительно и отрицательно заряженных частиц — плазмы . Совершенствование М. л. для плазмы направлено на осуществление с их помощью управляемой термоядерной реакции , в которой ядерная энергия лёгких элементов высвобождается не в виде мощного взрыва, а сравнительно медленно, в ходе контролируемого и регулируемого человеком процесса (см. Управляемый термоядерный синтез ).

Для того чтобы быть М. л., магнитное поле должно удовлетворять определённым условиям. Известно, что оно действует только на движущиеся заряженные частицы. Скорость частицы v в любой точке всегда можно представить в виде геометрической суммы двух составляющих — v^ , перпендикулярной к напряжённости Н

магнитного поля в этой точке, и v|| , совпадающей по направлению с Н. Сила F воздействия поля на частицу, так называемая Лоренца сила , определяется только v^ и не зависит от v|| . В СГС системе единицF по абсолютной величине равна
v^ H, где c — скорость света, е — заряд частицы. Сила Лоренца всегда направлена под прямым углом как к v^ , так и к v|| и не изменяет абсолютных величины скорости частицы, однако меняет направление этой скорости, искривляя траекторию частицы. Наиболее простым является движение частицы в однородном магнитном поле (Н повсюду одинакова по величине и направлению). Если скорость частицы направлена поперёк такого поля (v = v^ ), то её траекторией будет окружность радиуса R (рис. 1 , а). Сила Лоренца в этом случае играет роль центростремительной силы (равной mv2^ / R, m — масса частицы), что даёт возможность выразить R через v^ и Н : R = v^ / wн , где wн = eH / mc. Окружность, по которой движется заряженная частица в однородном магнитном поле, называется ларморовской окружностью, её радиус — ларморовским радиусом (Rл ), а wн — ларморовской частотой. Если скорость частицы направлена к полю под углом, отличающимся от прямого, то, кроме v^ , частица обладает и v|| . Ларморовское вращение при этом сохранится, но к нему добавится равномерное движение вдоль магнитного поля, так что результирующая траектория будет винтовой линией (рис. 1 , б).

Рассмотрение даже этого простейшего случая однородного поля позволяет сформулировать одно из требований к М. л.: её размеры должны быть велики по сравнению с Rл , иначе частица выйдет за пределы ловушки. Так как Rл убывает с возрастанием Н , то удовлетворить этому условию можно не только увеличением размеров М. л., но и увеличением напряжённости магнитного поля. При экспериментах в лабораториях идут по второму пути, в то время как в природных условиях, не стеснённых человеческими масштабами, чаще возникают М. л. с протяжёнными, но сравнительно слабыми полями (например, радиационный пояс Земли).

Далее, малость Rл обеспечивает ограничение движения частицы в направлении поперёк поля, но его необходимо ограничить и в направлении вдоль силовых линий поля. В зависимости от метода ограничения различают два типа М. л.: тороидальные и зеркальные (адиабатические).

Тороидальные М. л. Один из способов предотвращения ухода частиц из М. л. вдоль направления поля состоит в придании ловушке конфигурации, при которой у объёма, занимаемого ею, вообще нет «концов»; такой конфигурацией является, например, тор . Ловушка этого типа была первой М. л., предложенной И. Е. Таммом и А. Д. Сахаровым в 1950 в связи с проблемой осуществления управляемой термоядерной реакции. Простейшим примером М. л. этого типа является тороидальный соленоид (рис. 2 , а). Однако в ловушке со столь простой геометрией поля частицы удерживаются не очень долго: за каждый оборот вокруг тора частица отклоняется на небольшое расстояние поперёк поля (так называемый тороидальный дрейф). Эти смещения накапливаются, и в конце концов частицы попадают на стенки М. л. Для компенсации тороидального дрейфа можно сделать поле неоднородным вдоль М. л., как бы «прогофрировав» его (рис. 2 , б). Но более удобно создать конфигурацию, при которой силовые линии магнитного поля винтообразно навиваются на замкнутые поверхности, причём эти поверхности вложены одна в другую. Например, если внутри тороидального соленоида поместить проводник с током, проходящий по его средней линии (рис. 2 , в), то силовые линии поля будут навиваться на тороидальные поверхности. Частицы с малым Rл будут не очень сильно отклоняться от этих поверхностей. Аналогичные конфигурации можно создать с помощью внешних обмоток, например, как предложено американским учёным Л. Спицером в 1951, добавляя к обмотке тора (рис. 2, а) винтовую обмотку с попеременно направленными токами. Ещё один способ состоит в скручивании тора в фигуру типа «восьмёрки» (рис. 2 , г). Можно также использовать более сложные конфигурации, комбинируя различные элементы «гофрированных» и винтовых полей.

Поделиться:
Популярные книги

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Совершенный: Призрак

Vector
2. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: Призрак

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Локки 5. Потомок бога

Решетов Евгений Валерьевич
5. Локки
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Локки 5. Потомок бога

Наследник

Майерс Александр
3. Династия
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Наследник

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Вечный. Книга VI

Рокотов Алексей
6. Вечный
Фантастика:
рпг
фэнтези
5.00
рейтинг книги
Вечный. Книга VI

Отчий дом. Семейная хроника

Чириков Евгений Николаевич
Проза:
классическая проза
5.00
рейтинг книги
Отчий дом. Семейная хроника

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона