Большая Советская Энциклопедия (МЕ)
Шрифт:
Прототип М. и две его контрольные копии хранятся в Севре (Франция) в Международном бюро мер и весов. Во Всесоюзном научно-исследовательском институте им. Д. И. Менделеева (ВНИИМ) в Ленинграде хранятся две копии (№ 11 и 28) Международного прототипа М. При введении метрической системы мер в СССР (1918) государственным эталоном М. была признана копия № 28. Международный прототип М., погрешность которого 1x10– 7 , и национальный прототипы обеспечивали поддержание единства и точности измерений на необходимом для науки и техники уровне в течение десятков лет.
Однако рост требований к точности линейных измерений и необходимость создания воспроизводимого эталона М. стимулировали исследования по определению М. через длину световой волны. 11-я Генеральная
Лит.: Исаков Л. Д., На все времена, для всех народов, П., 1923; Баринов В. А., Современное состояние эталонов длины и методы точного измерения длины, Л., 1941; Батарчукова Н. Р., Новое определение метра, М., 1964; Исследования в области линейных измерений, М. — Л., 1965—68 [Тр. Метрологических институтов СССР, в. 78(138), в. 101(151)]; Бржезинский М. Л., Ефремов Ю. П., Каяк Л. К., Внедрение нового определения метра в практику линейных измерений, «Измерительная техника», 1970, № 9.
Л. К. Каяк.
Рис. 1. a — поперечное сечение эталона метра, б — штрихи на нейтральной плоскости ab эталона метра; расстояние между осями средних штрихов принимается за 1 м .
Рис. 2. Схема изотопной лампы с 86 Kr и сосуда для охлаждения её стенок до 63К: 1 — баллон лампы; 2 — катод лампы; 3 — капилляр, в котором происходит свечение; 4 — сосуд Дьюара; 5 — герметически закрывающаяся металлическая камера; 6 — термопара для контроля температуры; 7 — манометр.
Метр избирательный
Метр избира'тельный, квота избирательная, в избирательном праве количество голосов, необходимое для избрания одного депутата в данном избирательном округе . Применяется обычно при пропорциональной системе представительства и при наличии крупных избирательных округов, от которых избирается несколько депутатов. Рассчитывается путём деления общего числа поданных и признанных действительными голосов на число мест, подлежащих замещению в данном округе. После распределения мандатов согласно М. и. оставшиеся голоса распределяются различными способами: по системе наибольшего остатка,
...метр
...метр (от греч. m'etron — мера, metr'eo — измеряю), часть сложных слов, означающих: 1) измерительный прибор (например, барометр, термометр); 2) меру длины в метрической системе (например, километр, сантиметр).
Метревели Александр Ираклиевич
Метреве'ли Александр Ираклиевич (р. 2.11.1944, Тбилиси), советский спортсмен-теннисист, заслуженный мастер спорта (1966), журналист. Чемпион СССР (17 раз в 1966—73), Европы (9 раз в 1967—73) в разных разрядах, в 1967—72 неоднократный победитель открытых первенств Азии, АРЕ, Индии, ряда штатов Австралийского Союза.
Метрика (в музыке)
Ме'трика в музыке, с середины 19 в. учение о метре .
Метрика (матем. термин)
Ме'трика, математический термин, обозначающий правило определения того или иного расстояния между любыми двумя точками (элементами) данного множества А . При этом расстоянием r(а, b ) между точками а и b множества А называется вещественная числовая функция, удовлетворяющая следующим условиям:
1) r(а, b ) ³ 0, причём r(а, b ) = 0 тогда и только тогда, когда а = b ,
2) r(а, b ) = r(b, а ); 3) r(а, b ) + r(b, с ) ³ r(а, с ). На одном и том же множестве М. может вводиться различным образом. Например, на плоскости за расстояние между точками а и b , имеющими координаты (x1 , y1 ) и (х2 , y2 ) соответственно, можно принять не только обычное евклидово расстояние
но и различные другие расстояния, например
В векторных пространствах (функциональных и координатных) М. часто задаются нормы, иногда — с помощью скалярного произведения. В дифференциальной геометрии М. вводится путём задания элемента длины дуги при помощи дифференциальной квадратичной формы (см. Римановы геометрии ). Множество с введённой на нём М. называется метрическим пространством .
Иногда под М. понимают правило определения не только расстояний, но и углов; например, проективная метрика .
В. И. Соболев.
Метрика пространства-времени
Ме'трика простра'нства-вре'мени, определяет геометрические свойства четырёхмерного пространства-времени (объединяющего физическое трёхмерное пространство и время) в относительности теории . М. п.-в. характеризуется инвариантной (не зависящей от системы отсчёта) величиной — квадратом четырёхмерного интервала , определяющим пространственно-временную связь (квадрат «расстояния») между двумя бесконечно близкими событиями,