Большая Советская Энциклопедия (МЕ)
Шрифт:
В зависимости от минерального состава, крупности зёрен минералов, характера взаимного их прорастания и других факторов выделяется несколько технологических сортов М. р., которые по химическому составу и наличию в них сульфидов, окислов, карбонатов и сульфатов меди подразделяются на следующие природные типы: сульфидные, окисленные и смешанные. Главное значение имеют сульфидные руды, дающие 90 % мирового производства меди.
М. р., как правило, являются комплексными: наряду с нерудными минералами (кварцем, серицитом, баритом и другими) в них содержится пирит, часто пирротин, сульфиды цинка, свинца, никеля, кобальта, молибдена, сурьмы и т. д., а также примеси рассеянных элементов: Cd, Se, Te, Ga, Tl, Ge, In, Re и другие. Указанные сопутствующие компоненты (в том числе и S в сульфидах) представляют собой значительную ценность (до 50 % стоимости меди, извлекаемой из М. р.).
По текстурным особенностям выделяются руды массивные (обычно богатые) с содержанием меди выше 3 %, пригодные для непосредственной металлургической плавки (при непромышленном содержании других металлов), и прожилково-вкрапленные (рядовые 1—2 % и бедные 0,4—1,0 %), подвергаемые обычно обогащению методом коллективной или селективной флотации нередко с предварительным применением тяжёлых суспензий. Всё шире используется гидрометаллургический способ переработки бедных, особенно окисленных, руд с применением различных экстрагирующих реагентов.
По условиям образования, морфологии рудных тел и веществ, составу выделяется несколько промышленных типов М. р. (см. таблицу).
Главнейшие типы медных руд
Промышлен- ные типы руд | Генезис месторож- дений | Основные формы рудных тел | Среднее содержание меди в добываемых медных рудах, % | Сопутствующие компоненты | |
главные | второстепен- ные | ||||
| Плутоно- генные ги- дротерма- льные (кварцево- го параге- незиса) | Штокверки и рудные столбы | 0,3—2,0 | S, Mo, Au | Ag, Re, рассеянные элементы |
Медистые песчаники и сланцы | Осадочные или телете- рмальные | Пластовые залежи | 1,5—6,0 | Pb,Au,S | Zn,Co,Re, рассеянные элементы |
Медноколче- данные | Вулкано- генно-мета- соматичес- кие и вул- каногенно- осадочные | Линзообраз- ные и гнез- дообразные залежи | 1,5—8,0 | S,Zn,Au,барит | Ag и рассеянные элементы |
Медно-нике- левые (суль- фидные) | Ликвацио- нные | Пластовые залежи, ли- нзы и секу- щие жилы массивных и вкраплен- ных руд | 1—2 и выше | Ni,Co,S, металлы платино- вой груп- пы | Ag,Au,рассеянные элементы |
Полиметал- лические | Плутоноге- нные и ву- лканоген- ные гидро- термаль- ныные (су- льфидного парагенезиса) | Штоки,тру- бы,зоны,жи- лы массив- ных и вкра- пленных руд | 0,5—4,0 | Pb, Zn, S | Au, Ag, Ba, рассеянные элементы |
Жильные кварц-суль- фидные | Плутоноге- нные гид- ротермаль- ные(квар- цевого па- рагенези- са) | Жилы, жильные зоны | 2—5 | Pb, Zn, Au, S | Ag, рассеянные элементы |
Скарновые | Контакто- во-метасо- матичес- кие | Приконтак- товые, плас- товые и се- кущие зале- жи , линзы и гнёзда | 2—3 и выше | Au, Mo, Co, Fe, S | Ag, рассеянные элементы |
Прочие типы руд (медно- ванадиевые, медно- кобальтовые, медно- висмутовые, медно- железные, медно- золотые и другие) | Эндоген- ные (раз- личного генезиса) | Разнообра- ные формы (чаще жилы, зоны, плас- тообразные) | 0,5—2 | V, Co, W, Mo, Sn, Au, S и другие | Ag, редкие и рассеянные элементы |
Первое место по запасам и добыче меди (свыше 60 % разведанных запасов и 40 % мировой добычи без социалистических стран) занимают прожилково-вкрапленные руды. Они широко распространены во многих странах: в СССР (Коунрад, Алмалык, Каджаран), Болгарии, Венгрии, Чили (Чукикамата и др.), США (Бингем и др.), Канаде (Валли-Коппер) и других. Вторым крупным источником для получения меди являются медистые песчаники и сланцы, заключающие в себе около 30 % мировых разведанных запасов и 20 % мировой добычи металла (без социалистических стран). Крупнейшие месторождения этого типа расположены в СССР (Джезказган, Удокан), в Замбии и Заире (см. Меденосный пояс Центральной Африки). Важную роль играют медноколчеданные руды (свыше 5 % разведанных запасов меди мира без социалистич. стран). Такие месторождения имеются в СССР (Урал), в Испании (Рио-Тинто), в Югославии (Бор), Турции (Эргани-Маден) и других странах. Медно-никелевые месторождения (10 % разведанных запасов меди без социалистических стран) разрабатываются главным образом для получения никеля (в СССР — Норильская и Кольская группы месторождений; за рубежом: в Канаде — Садбери, в США — Аляска, Стиллуотер). Медьсодержащие полиметаллические (свинцово-цинково-медные) руды широко распространены во всём мире. Скарновые медные руды, генетически связанные с умеренно кислыми гранитоидами, жильные и другие типы месторождений в общем балансе запасов и мировой добычи меди имеют второстепенное значение. Основными производителями меди в капиталистическом мире являются (на начало 1973; производство меди в концентрате, в тысячах т ): США (1490), Замбия (717), Чили (716), Канада(708) и Заир (428), общая доля которых в мировом производстве этого металла (без социалистических стран) составляет более 81 %. См. также Медь .
Лит.: Смирнов В. И., Геология полезных ископаемых, 2 изд., М., 1969; Инструкция по применению классификации запасов к месторождениям медных руд, М., 1961; Минеральные ресурсы промышленно развитых капиталистических и развивающихся стран, М., 1973.
А. С. Богатырёв.
Медные сплавы
Ме'дные спла'вы , сплавы на основе меди. М. с. — первые металлические сплавы, созданные человеком (см. Бронзовый век ). Примерно до сер. 20 в. по мировому производству М. с. занимали 1-е место среди сплавов цветных металлов, уступив его затем алюминиевым сплавам. Со многими элементами медь образует широкие области твёрдых растворов замещения, в которых атомы добавки занимают места атомов меди в гранецентрированной кубической решётке. Медь в твёрдом состоянии растворяет до 39 % Zn, 15,8 % Sn, 9,4 % Al, a Ni — неограниченно. При образовании твёрдого раствора на основе меди растут её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, может значительно повыситься коррозионная стойкость, а пластичность сохраняется на достаточно высоком уровне. При добавлении легирующего элемента свыше предела растворимости образуются соединения, в частности электронные, т. е. характеризующиеся определённой электронной концентрацией (отношением суммарного числа валентных электронов к числу атомов, которое может быть равно 3 /2 , 21 /13 или 7 /4 ). Этим соединениям условно приписывают формулы CuZn, Cu5 Sn, Cu31 Sn8 , Cu9 Al4 , CuBe и другие. В многокомпонентных М. с. часто присутствуют сложные металлические соединения неустановленного состава, которые значительно твёрже, чем раствор на основе меди, но весьма хрупки (обычно в двухфазных и многофазных М. с. доля их в структуре намного меньше, чем твёрдого раствора на основе меди).
М. с. получают сплавлением меди с легирующими элементами или с промежуточными сплавами — лигатурами, содержащими легирующие элементы. Для раскисления (восстановления окислов) широко применяют введение в расплав малых добавок фосфора (десятые доли %). М. с. подразделяют на деформируемые и литейные. Из деформируемых М. с. отливают (в изложницы или непрерывным методом) круглые и плоские слитки, которые подвергают горячей и холодной обработке давлением: прокатке, прессованию через матрицу или волочению для производства листов, лент, прутков, профилей, труб и проволоки. М. с. хорошо обрабатываются давлением, и деформированные полуфабрикаты составляют основную долю всего объёма их производства. Литейные М. с. обладают хорошими литейными свойствами, из них отливкой в земляные и металлические формы получают фасонные детали, а также декоративно-прикладные изделия и скульптуру (см. Бронза в искусстве).
Механические свойства М. с. изменяются в широких пределах при холодной обработке давлением и при отжиге. Холодной деформацией можно увеличить твёрдость и предел прочности М. с. в 1,5—3 раза при одновременном снижении пластичности (см. Наклёп ), а последующий рекристаллизационный отжиг позволяет частично или полностью (в зависимости от температуры и его продолжительности) восстановить исходные (до деформации) свойства (см. Термическая обработка ). Смягчающий отжиг М. с. после холодной обработки давлением проводят при 600—700 °С. Большинство М. с. не подвергают упрочняющей термической обработке (закалке и старению), так как эта обработка или в принципе невозможна, если сплав при всех температурах однофазен, или величина упрочнения очень мала. Для создания термически упрочняемых М. с. используют такие легирующие элементы, которые образуют с медью или между собой интерметаллические соединения (например, CuBe, NiBe, Ni3 Al), растворимость которых в твёрдом растворе на базе меди с понижением температуры уменьшается. При закалке таких сплавов образуется пересыщенный твёрдый раствор, из которого при искусственном старении выделяются дисперсные интерметаллические соединения, упрочняющие М. с.
М. с. подразделяют на латуни , бронзы и медно-никелевые сплавы . В латунях главной добавкой является цинк, в бронзах — любой элемент, кроме цинка и никеля. Промышленные марки выпускаемых в СССР
Таблица 1. — Состав, типичные механические свойства* и назначение латуней (1 Мн/м2 » 0,1 кгс/мм2 )
Марка сплава | Состав | Предел прочности sb , Мн/м2 | Относительное удлинение d, % | Твердость HB , Мн/м2 | Примерное назначение |
Л96 | 95—97% Cu, остальное Zn | 240 | 50 | 470 | Радиаторные трубки |
Л90 | 88—91% Cu, остальное Zn | 260 | 45 | 530 | Листы и ленты для плакировки |
Л80 | 79—81% Cu, остальное Zn | 320 | 52 | 540 | Проволочные сетки и целлюлозно-бумажной промышленности, сильфоны |
Л68 | 67—70% Cu, остальное Zn | 320 | 55 | 550 | Изделия, получае- мые холодной штамповкой и глубокой вытяжкой |
Л63 | 62—65% Cu, остальное Zn | 330 | 49 | 560 | Полосы, листы, лента, проволока, трубы, прутки |
ЛА77-2 | 76—79% Cu, 1,75—2,5% Al, остальное Zn | 400 | 55 | 600 | Конденсаторные трубы |
ЛАЖ60-1-1 | 58—61% Cu, 0,75—1,5% Al, 0,75—1,5% Fe, 0,1—0,6% Mn, остальное Zn | 450 | 45 | 950 | Трубы и прутки |
ЛАЖМц66-6-3-2 | 64—68% Cu, 6—7% Al, 2—4% Fe, 1,5—2,5% Mn, остальное Zn | 650 | 7 | 1600 | Литые массивные червячные винты, гайки нажимных винтов |
ЛАН59-3-2 | 57—60% Cu, 2,5—3,5% Al, 2—3% Ni, остальное Zn | 380 | 50 | 750 | Трубы и прутки |
ЛЖМц59-1-1 | 57—60% Cu, 0,6—1,2% Fe, 0,5—0,8% Mn, 0,1—0,4% Al, 0,3—0,7% Sn, остальное Zn | 450 | 50 | 880 | Полосы, проволока, прутки и трубы |
ЛН65-5 | 64—67% Cu, 5—6,5% Ni, остальное Zn | 400 | 65 | 700 | Манометрические трубки, конденсаторные трубы |
ЛО70-1 | 69—71% Cu, 1—1,5% Sn, остальное Zn | 350 | 60 | 590 | Конденсаторные трубы, теплотехническая аппаратура |
ЛС74-3 | 72—75% Cu, 2,4—3% Pb, остальное Zn | 350 | 50 | 570 | Детали часов, автомобилей |
ЛК80-3Л | 79—81% Cu, 2,5—4,5% Si, остальное Zn | 300 | 20 | 1050 | Арматура, подвергающаяся действию воды, детали судов |
ЛКС80-3-3 | 79—80% Cu, 2,5—4,5% Si, 2—4% Pb, остальное Zn | 350 | 20 | 950 | Литые подшипники и втулки |
* Свойства деформируемых латуней указаны для отожжённого состояния.
Таблица 2. — Состав, типичные механические свойства* и назначение бронз (1 Мн/м2 » 0,1 кгс/мм2 )
Марка сплава | Состав | Предел прочности sb , Мн/м2 | Относительное удлинение d, % | Твердость HB , Мн/м2 | Примерное назначение |
Бр. ОФ10-1 | 9—11% Sn, 0,8—1,2% P | 250 | 3 | 900 | Подшипники, шестерни, венцы, втулки |
Бр. ОФ4-0,25 | 3,5—4% Sn, 0,2—0,3% P | 340 | 52 | 600 | Трубки для манометрических пружин |
Бр. ОЦС5-5-5 | 4—6% Sn, 4—6% Zn, 4—6% P | 150 | 6 | 600 | Антифрикционные детали и арматура |
Бр. ОЦСН3-7-5-1 | 2,5—4% Sn, 6—9,5% Zn, 3—6% Pb, 0,5—2% Ni | 180 | 8 | 600 | Арматура, работающая в морской и пресной воде, в атмосфере пара |
Бр. А7 | 6—8% Al | 420 | 70 | 700 | Пружины и пружинящие детали |
Бр. АЖ9-4 | 8—10% Al, 2—4% Fe | 600 | 40 | 1100 | Шестерни, втулки, сёдла клапанов |
Бр. АЖМц10-3-1,5 | 9—11% Al, 2,4% Fe, 1—2% Mn | 610 | 32 | 1300 | Шестерни, втулки, подшипники |
Бр. АЖН10-4-4 | 9,5—11% Al, 3,5—5,5% Fe, 3,5—5,5% Ni | 600 | 35 | 1500 | Шестерни, сёдла клапанов |
Бр. АМц9-2 | 8—10% Al, 1,5—2,5% Mn | 400 | 25 | 1600 | Детали морских судов, электрооборудования |
Бр. Мц5 | 4,5—5,5% Mn | 340 | 30 | 800 | Поковки |
Бр. Б2 | 1,9—2,2% Be, 0,2—0,5% Ni | 1350 | 1,5 | 3500 | Пружины и пружинящие детали в авиации и приборостроении |
Бр. КН1-3 | 0,6—1,1% Si, 2,4—3,4% Ni, 0,1—0,4% Mn | 600 | 12 | 1800 | Направляющие втулки и другие детали ответственного назначения |
Бр. С30 | 27—33% Pb | 70 | 5 | 450 | Сальники |