Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ПЕ)
Шрифт:

В обозначениях, принятых в атомной физике, реальная схема формирования электронных конфигураций атомов по мере роста Z может быть в общем виде записана следующим образом:

Вертикальными чертами разделены периоды П. с. э. (их номера обозначены цифрами наверху); жирным шрифтом выделены подоболочки, которыми завершается построение оболочек с данным n . Под обозначениями подоболочек проставлены значения главного (n ) и орбитального (l ) квантовых чисел, характеризующие последовательно заполняющиеся подоболочки. В соответствии с Паули принципом ёмкость каждой электронной оболочки равна 2n2 , а ёмкость каждой подоболочки — 2(2l + 1). Из вышеприведённой схемы легко определяются ёмкости последовательных периодов: 2, 8, 8, 18, 18, 32, 32... Каждый период начинается элементом,

в атоме которого появляется электрон с новым значением n . Таким образом, периоды можно характеризовать как совокупности элементов, начинающиеся элементом со значением n , равным номеру периода, и l = 0 (ns1– элементы), и завершающиеся элементом с тем же n и l = 1 (np6– элементы); исключение — первый период, содержащий только ls– элементы. При этом к а– подгруппам принадлежат элементы, для атомов которых n равно номеру периода, а l = 0 или 1, то есть происходит построение электронной оболочки с данным n . К б– подгруппам принадлежат элементы, в атомах которых происходит достройка оболочек, остававшихся незавершёнными (в данном случае n меньше номера периода, а l = 2 или 3). Первый — третий периоды П. с. э. содержат только элементы а– подгрупп.

Приведённая реальная схема формирования электронных конфигураций атомов не является безупречной, поскольку в ряде случаев чёткие границы между последовательно заполняющимися подоболочками нарушаются (например, после заполнения в атомах Cs и Ba 6s– подоболочки в атоме лантана появляется не 4f– , а 5d– электрон, имеется 5d– электрон в атоме Gd и т.д.). Кроме того, первоначально реальная схема не могла быть выведена из каких-либо фундаментальных физических представлений; такой вывод стал возможным благодаря применению квантовой механики к проблеме строения атома.

Типы конфигураций внешних электронных оболочек атомов (на илл. конфигурации указаны) определяют основные особенности химического поведения элементов. Эти особенности являются специфическими для элементов а– подгрупп (s– и р– элементы), б– подгрупп (d– элементы) и f– семейств (лантаноиды и актиноиды). Особый случай представляют собой элементы первого периода (H и He). Высокая химическая активность атомарного водорода объясняется лёгкостью отщепления единственного ls– электрона, тогда как конфигурация атома гелия (1s2 ) является весьма прочной, что обусловливает его химическую инертность.

Поскольку у элементов а– подгрупп происходит заполнение внешних электронных оболочек (с n , равным номеру периода), то свойства элементов заметно меняются по мере роста Z. Так, во втором периоде Li (конфигурация 2s1 ) — химически активный металл, легко теряющий валентный электрон, a Be (2s2 ) — также металл, но менее активный. Металлический характер следующего элемента B (2s2p ) выражен слабо, а все последующие элементы второго периода, у которых происходит застройка 2р– подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внешней электронной оболочки Ne (2s2p6 ) чрезвычайно прочна, поэтому неон — инертный газ. Аналогичный характер изменения свойств наблюдается у элементов третьего периода и у s– и р– элементов всех последующих периодов, однако ослабление прочности связи внешних электронов с ядром в а– подгруппах по мере роста Z определённым образом сказывается на их свойствах. Так, у s– элементов отмечается заметный рост химической активности, а у р– элементов — нарастание металлических свойств. В VIIIa– подгруппе ослабляется устойчивость конфигурации ns2 np6 , вследствие чего уже Kr (четвёртый период) приобретает способность вступать в химические соединения. Специфика р– элементов 4—6-го периодов связана также с тем, что они отделены от s– элементов совокупностями элементов, в атомах которых происходит застройка предшествующих электронных оболочек.

У переходных d– элементов б– подгрупп достраиваются незавершённые оболочки с n , на единицу меньшим номера периода. Конфигурация внешних оболочек у них, как правило, ns2 . Поэтому все d– элементы являются металлами. Аналогичная структура внешней оболочки d– элементов в каждом периоде приводит к тому, что изменение свойств d- элементов по мере роста Z не является резким и чёткое различие обнаруживается лишь в высших степенях окисления, в которых d– элементы проявляют определённое сходство с р– элементами соответствующих групп П. с. э. Специфика элементов VIIIб– подгруппы объясняется тем, что их d

подоболочки близки к завершению, в связи с чем эти элементы не склонны (за исключением Ru и Os) проявлять высшие степени окисления. У элементов Iб– подгруппы (Cu, Ag, Au) d– подоболочка фактически оказывается завершенной, но ещё недостаточно стабилизированной, эти элементы проявляют и более высокие степени окисления (до III в случае Au).

В атомах лантаноидов и актиноидов происходит достройка ранее незавершённых f– подоболочек с n , на 2 единицы меньшим номера периода; конфигурация внешние оболочки сохраняется неизменной (ns2 ); f– электроны у лантаноидов не оказывают существенного влияния на химические свойства. Лантаноиды проявляют преимущественно степень окисления III (за счёт двух 6s– электронов и одного d– электрона, появляющегося в атоме La); однако такое объяснение не является достаточно удовлетворительным, так как 5d– электрон содержится только в атомах La, Ce, Gd и Lu; поэтому считается, что в др. случаях степень окисления III обусловлена переходом одного из 4f– электронов в 5d– подоболочку. Что касается актиноидов, то в интервале Z = 90—95 энергии связи электронов 6d и 5f оказываются весьма близкими, это объясняет способность элементов давать соединения в широком диапазоне степеней окисления — до VII у Np, Pu и Am. У актиноидов с Z ³ 96 предпочтительной становится степень окисления III. Оценка химических свойств К и и элемента 105 позволяет считать, что в этой области П. с. э. начинается систематическое заполнение 6d– подоболочки.

Выше были в общих чертах объяснены причины и особенности периодического изменения свойств химических элементов по мере роста Z. Это объяснение основано на анализе закономерностей реальной схемы формирования электронных конфигураций свободных атомов. Однако знание электронной конфигурации свободного атома часто не позволяет сделать однозначный вывод о важнейших химических свойствах, которые должен проявлять соответствующий элемент. Например, внешние электронные конфигурации атомов He и щёлочноземельных металлов совпадают (ns2 ), но «сходство» гелия с последними ограничивается лишь определённой аналогией в спектрах. Поэтому принцип периодического (по мере возрастания Z) повторения сходных типов электронных конфигураций лежит в основе периодической системы свободных атомов. Что касается П. с. э., то она отражает закономерное изменение свойств элементов, проявляемых ими при химических взаимодействиях; в ходе последних происходит перестройка электронных конфигураций взаимодействующих атомов, иногда значительная. Поэтому между свободными и связанными атомами существует определённое различие. В целом же сходство электронных конфигураций свободных атомов коррелирует с подобием химического поведения соответствующих элементов. Задача строгого количественного объяснения всей специфики проявляемых химическими элементами свойств и периодичности этих свойств оказывается чрезвычайно сложной, поэтому нельзя утверждать, что создана количественная теория П. с. э. Отдельные аспекты такой теории разрабатываются в русле современных методов квантовой механики (см. Квантовая химия ,Валентность ).

Верхняя граница П. с. э. пока неизвестна, поэтому неизвестно и конечное количество элементов, охватываемых П. с. э. Вопрос о пределе искусственного синтеза элементов также пока не решен. Все изотопы уже известных элементов с Z ³ 101 являются короткоживущими (см. Ядерная химия ). Однако существуют предположения, что ядра атомов гипотетических элементов с Z = 114, 126, 164 и 184 будут достаточно устойчивы по отношению к спонтанному делению. Это даёт основания рассчитывать на осуществление синтеза таких элементов. Оценка электронных конфигураций и важнейших свойств неизвестных элементов седьмого периода показывает, что эти элементы, по-видимому, должны быть аналогами соответствующих элементов шестого периода. Напротив, для восьмого периода (состоящего, согласно теории, из 50 элементов) предсказывается весьма сложный характер изменения химических свойств по мере роста Z, связанный с резким нарушением последовательности заполнения электронных подоболочек в атомах.

Значение П. с. э. П. с. э. сыграла и продолжает играть огромную роль в развитии естествознания. Она явилась важнейшим достижением атомно-молекулярного учения, позволила дать современное определение понятия «химический элемент» и уточнить понятия о простых веществах и соединениях. Закономерности, вскрытые П. с. э., оказали существенное влияние на разработку теории строения атомов, способствовали объяснению явления изотонии. С П. с. э. связана строго научная постановка проблемы прогнозирования в химии, что проявилось как в предсказании существования неизвестных элементов и их свойств, так и в предсказании новых особенностей химического поведения уже открытых элементов. П. с. э.— фундамент химии, в первую очередь неорганической; она существенно помогает решению задач синтеза веществ с заранее заданными свойствами, разработке новых материалов, в частности полупроводниковых, подбору специфических катализаторов для различных химических процессов и т.д. П. с. э.— также научная основа преподавания химии.

Лит.: Менделеев Д. И., Периодический закон. Основные статьи, М., 1958; Кедров Б. М., Три аспекта атомистики. ч. 3. Закон Менделеева, М., 1969; Рабинович Е., Тило Э., Периодическая система элементов. История и теория, М.— Л., 1933; Карапетьянц М. Х., Дракин С. И., Строение вещества, М., 1967; Астахов К. В., Современное состояние периодической системы Д. И. Менделеева, М., 1969; Кедров Б. М., Трифонов Д. Н., Закон периодичности и химические элементы. Открытия и хронология, М., 1969; Сто лет периодического закона химических элементов. Сборник статей, М., 1969; Сто лет периодического закона химических элементов. Доклады на пленарных заседаниях, М., 1971; Spronsen J. W. van, The periodic system of chemical elements. A history of the first hundred years, Amst.— L.— N. Y., 1969; Клечковский В. М., Распределение атомных электронов и правило последовательного заполнения (n + l)-групп, М., 1968; Трифонов Д. Н., О количественной интерпретации периодичности, М., 1971; Некрасов Б. В., Основы общей химии, т. 1—2, 3 изд., М., 1973; Кедров Б. М., Трифонов Д. Н., О современных проблемах периодической системы, М., 1974.

Поделиться:
Популярные книги

LIVE-RPG. Эволюция-1

Кронос Александр
1. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.06
рейтинг книги
LIVE-RPG. Эволюция-1

Учим английский по-новому. Изучение английского языка с помощью глагольных словосочетаний

Литвинов Павел Петрович
Научно-образовательная:
учебная и научная литература
5.00
рейтинг книги
Учим английский по-новому. Изучение английского языка с помощью глагольных словосочетаний

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Миротворец

Астахов Евгений Евгеньевич
12. Сопряжение
Фантастика:
эпическая фантастика
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Миротворец

Солнце мертвых

Атеев Алексей Григорьевич
Фантастика:
ужасы и мистика
9.31
рейтинг книги
Солнце мертвых

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X

Возрождение Феникса. Том 2

Володин Григорий Григорьевич
2. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.92
рейтинг книги
Возрождение Феникса. Том 2

Блуждающие огни 2

Панченко Андрей Алексеевич
2. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Блуждающие огни 2

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

А небо по-прежнему голубое

Кэрри Блэк
Фантастика:
фэнтези
5.00
рейтинг книги
А небо по-прежнему голубое

Я тебя не отпущу

Коваленко Марья Сергеевна
4. Оголенные чувства
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не отпущу

Законы Рода. Том 3

Андрей Мельник
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3