Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ПЛ)
Шрифт:

В настоящее время (1975) практическое применение на советском и американском космических летательных аппаратах нашли плазменные электрореактивные двигатели. В таких П. д. через рабочее тело пропускается электрический ток от бортового источника энергии, в результате чего образуется плазма с температурой в десятки тыс. градусов. Эта плазма затем ускоряется либо газодинамически, либо за счёт силы Ампера, возникающей при взаимодействии тока с магнитными полями (см. Ампера закон, Лоренца сила, Магнитная гидродинамика).

Исследуются возможности создания П. д. на др. принципах. Так, существуют модели П. д., в которых действующей силой является реактивная сила отдачи, возникающая при разлёте продуктов разложения и испарения

поверхностей твёрдых тел, облучаемых мощными импульсами лазерного излучения или импульсными электронными пучками. Обсуждается также схема ядерного ракетного двигателя на основе ядерного реактора с газофазными (точнее, плазменными) тепловыделяющими элементами. В этом реакторе делящееся вещество должно находиться в состоянии плазмы с температурой в несколько десятков тыс. градусов. При контакте с ним рабочее тело (например, водород) будет нагреваться до соответствующих температур, что позволит получить скорости истечения в несколько десятков км/сек.

Лит.: Гильзин К. А., Электрические межпланетные корабли, 2 изд., М., 1970; Плазменные ускорители, под ред. Л. А. Арцимовича [и др.], М., 1973.

А. И. Морозов.

Плазменные источники электрической энергии

Пла'зменные исто'чники электри'ческой эне'ргии, преобразователи тепловой энергии плазмы в электрическую энергию. Существует 2 типа П. и. э. э.— магнитогидродинамический генератор и термоэлектронный преобразователь.

Плазменные ускорители

Пла'зменные ускори'тели, устройства для получения потоков плазмысо скоростями 10—103км/сек и более, что соответствует кинетической энергии ионов от ~10 эв до 105—106эв. На нижнем пределе энергии П. у. соседствуют с генераторами низкотемпературной плазмы — плазматронами, на верхнем — с коллективными ускорителями заряженных частиц (см. Ускорения заряженных частиц коллективные методы). Как правило, П. у. являются ускорителями полностью ионизованной плазмы, поэтому процессы возбуждения и ионизации, а также тепловые процессы играют в них, в отличие от плазматронов, вспомогательную роль.

Плазменные потоки с большими скоростями можно получить разными способами, например воздействием лазерного луча на твёрдое тело. Однако к собственно П. у. относят лишь устройства (рис. 1), в которых ускорение и обычно одновременное приготовление плазмы осуществляются за счёт электрической энергии с помощью одного или нескольких специальных электрических разрядов.

В отличие от ускорителей заряженных частиц, в канале П. у. находятся одновременно частицы с зарядами обоих знаков — положительные ионы и электроны, т. е. не происходит нарушения квази-нейтральности. Это снимает ограничения, связанные с объёмным (пространственным) зарядом (см. Ленгмюра формула), и позволяет получать плазменные потоки с эффективным током ионов в несколько млн. а при энергии частиц ~ 100 эв. При ионных токах ~ 1000 а уже достигнута энергия частиц в несколько кэв.

Из П. у. ионы и электроны выходят практически с равными направленными скоростями, так что основная энергия потока приходится на ионы (вследствие их большой массы). Поэтому П. у. — это электрические системы, ускоряющие ионы в присутствии электронов, компенсирующих объёмный заряд ионов.

Механизм ускорения. При анализе рабочего процесса в П. у. плазму можно рассматривать и как сплошную среду, и как совокупность частиц (ионов и электронов). В рамках первого подхода ускорение плазмы обусловлено перепадом полного (ионного и электронного) давления p = pi + pe и действием силы Ампера FAмп (см. Ампера закон), возникающей при взаимодействии токов, текущих в плазме, с магнитным полем, FAмп ~ [jB], где j — плотность тока в плазме, В — индукция магнитного поля.

В рамках второго

подхода ускорение ионов может происходить в результате: 1) действия электрического поля Е, существующего в плазменном объёме; 2) столкновений направленного потока электронов с ионами («электронного ветра»); 3) столкновений ионов с ионами, благодаря которым энергия хаотического движения ионов переходит в направленную (тепловое или газодинамическое ускорение ионов). Наибольшее значение для П. у. имеет электрическое ускорение ионов, меньшее — два последних механизма.

Классификация плазменных ускорителей. П. у. делятся на тепловые и электромагнитные в зависимости от того, преобладает ли в процессе ускорения перепад полного давления р или сила Ампера.

Среди тепловых П. у. основной интерес представляют неизотермические ускорители, в которых pe >> pi. Это объясняется тем, что обычно трудно создать плазму с высокой температурой ионов Ti, и сравнительно просто — с «горячими» электронами (Te >> Ti). Такая плазма является неизотермической. Конструктивно неизотермический ускоритель представляет собой «магнитное сопло» (рис. 2), в котором либо путём инжекции быстрых электронов, либо путём электронного циклотронного резонанса создают плазму с «горячими» электронами, Te ~ 107109 К, или в энергетических единицах: kTe ~ 103105эв (где k Больцмана постоянная).

Электроны, стремясь покинуть камеру, создают электрическое поле объёмных зарядов, которое «вытягивает» (ускоряет) ионы, сообщая им энергию порядка kTe.

Электромагнитные П. у. подразделяются по характеру подвода энергии к плазме. Различают три класса:

а) радиационные ускорители, в которых ускорение плазменного потока происходит за счёт давления электромагнитной волны, падающей на плазменный сгусток (рис. 3, а); б) индукционные ускорители — импульсные системы, в которых внешнее нарастающее магнитное поле В индуцирует ток j в плазменном кольце (рис. 3, б), созданном тем пли иным способом. Взаимодействие этого тока с радиальной составляющей внешнего магнитного поля создаёт силу Ампера, которая и ускоряет плазменное кольцо; в) электродные плазменные ускорители, в которых существует непосредственный контакт ускоряемой плазмы с электродами, подключенными к источнику напряжения. При амперовом взаимодействии этого тока с внешним (т. е. созданным автономными магнитными системами) или собственным (созданным током, протекающим через плазму) магнитным полем происходит ускорение плазмы. Наиболее изученными и многочисленными являются электродные П. у., которые ниже будут рассмотрены подробнее.

А. Плазменные ускорители с собственным магнитным полем

Импульсные электродные ускорители (пушки). Первым П. у. был «рельсотрон» (рис. 4, а), питаемый конденсаторной батареей. Плазменный сгусток создаётся при пропускании большого тока через тонкую проволоку, натянутую между рельсами, которая при этом испаряется и ионизуется, или за счёт ионизации газа, впрыскиваемого в межэлектродный промежуток через специальный клапан. При разряде на ток в плазменной перемычке (достигающий десятков и сотен ка) действует собственное магнитное поле электрического контура, в результате чего за время порядка 1 мксек и происходит ускорение сгустка. Позднее импульсным ускорителям был придан вид коаксиальной системы (рис. 4, б). В этом случае ускорение сгустка плазмы происходит под действием силы Ампера Faмп, возникающей при взаимодействии радиальной составляющей тока jr с азимутальным собственным магнитным полем Hf. Такие П. у. уже нашли широкое применение и позволяют получать сгустки со скоростями до 108см/сек и общим числом частиц до 1018.

Поделиться:
Популярные книги

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Очкарик 3

Афанасьев Семён
3. Очкарик
Фантастика:
фэнтези
5.75
рейтинг книги
Очкарик 3

Игра престолов. Битва королей

Мартин Джордж Р.Р.
Песнь Льда и Огня
Фантастика:
фэнтези
боевая фантастика
8.77
рейтинг книги
Игра престолов. Битва королей

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Дикая фиалка заброшенных земель

Рейнер Виктория
1. Попаданки рулят!
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Дикая фиалка заброшенных земель

Санек 4

Седой Василий
4. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 4

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Черт из табакерки

Донцова Дарья
1. Виола Тараканова. В мире преступных страстей
Детективы:
иронические детективы
8.37
рейтинг книги
Черт из табакерки

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Часовая битва

Щерба Наталья Васильевна
6. Часодеи
Детские:
детская фантастика
9.38
рейтинг книги
Часовая битва