Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ПО)
Шрифт:

Лит.: Бурдун Г. Д., Марков Б. Н., Основы метрологии, М., 1972; Тюрин Н. И., Введение в метрологию, М., 1973.

К. П. Широков.

Поверка вечерняя

Пове'рка вече'рняя , ежедневная поверка рядового и сержантского состава в подразделениях Советских Вооруженных Сил. При П. в. дежурный по роте выстраивает роту без оружия и старшина роты или лицо, его замещающее, поверяет личный состав поименному списку. Первыми называют фамилии военнослужащих, зачисленных приказами министра обороны СССР за совершенные ими подвиги в списки роты навечно или почётными солдатами. По окончании П. в. старшина роты объявляет приказы, отдельные приказания и наряд на следующий день. Периодически производятся общие батальонные или полковые П. в., на которых присутствуют и все офицеры батальона (полка); поверку личного состава проводят командиры рот и докладывают командиру батальона, который при полковой поверке докладывает командиру полка.

Поверочная линейка

Пове'рочная лине'йка в машиностроении, линейка, предназначенная для

определения непрямолинейности (неплоскостности и непараллельности) поверхности, т. е. наибольшего расстояния от точек её реального профиля до прилегающей прямой (ребра линейки). Различают П. л. лекальные (с двусторонним скосом, трёхгранные и четырёхгранные) и с широкой рабочей поверхностью (прямоугольного, двутаврового сечения и в виде мостиков). Лекальные П. л. служат для определения непрямолинейности поверхности на просвет приложением ребра линейки к контролируемой поверхности. Так может быть определён просвет в 1—5 мкм. П. л. с широко и рабочей поверхностью используют для определения непрямолинейности по методу измерения линейных отклонений от поверхности контролируемой детали до поверхности линейки, установленной на опорах, или при проверке неплоскостности деталей по т. н. методу пятен «на краску». Угловыми П. л. пользуются только при проверке «на краску».

П. л. лекального типа изготовляют длиной 80—500 мм, линейки с широкой рабочей поверхностью — 200—4000 мм, угловые — 630 и 1000 мм с углами 45, 55 и 60°. В зависимости от длины и класса точности рабочие поверхности лекальных линеек имеют отклонения от прямолинейности 0,6—4 мкм; П. л. с широкой поверхностью имеют отклонения от плоскостности 2,5—100 мкм. С

Н. Н. Марков.

Поверхностей теория

Пове'рхностей тео'рия , раздел дифференциальной геометрии, в котором изучаются свойства поверхностей (см. Дифференциальная геометрия , Поверхность ). В классической П. т. рассматриваются свойства поверхностей, неизменные при движениях. Одна из основных задач классической П. т. — задача измерений на поверхности. Совокупность фактов, получаемых при помощи измерений на поверхности, составляет внутреннюю геометрию поверхности. К внутренней геометрии поверхности относятся такие понятия, как длина линии, угол между двумя направлениями, площадь области, а также геодезические линии , геодезическая кривизна линии и др. Внутреннюю геометрию определяет первая основная квадратичная форма поверхности

ds 2 = Edu2 + 2Fdudu + Gdu2 , (1)

[здесь Е = r2u , F = ru ru , G = r2u, r = r (u, u ) радиус-вектор переменной точки поверхности, u, u — её криволинейные координаты], выражающая квадрат дифференциала дуги линии на поверхности. Именно, если известны функции Е = E (u, u ), F = F (u, u ), G = G (u, u ), то, зная внутренние уравнения линии u = u (t ), u = u (t ) и интегрируя ds, можно определить длину этой линии; кроме того, существуют формулы, которые при данных Е, F, G выражают угол между двумя линиями и площадь области по внутренним уравнениям этих линий и по внутреннему уравнению контура области. Изучение пространственного строения окрестности точки на поверхности производится при помощи второй основной квадратичной формы поверхности

2h= Ldu2 + 2Mdud u + Ndu2 , (2)

здесь L = ruи n, М = ruun, N = ruun,

единичный вектор нормали к поверхности. Величина h с точностью до малых более высокого порядка относительно du, du равна расстоянию от точки М’ поверхности с координатами u + du, u + du до касательной плоскости g в точке М с координатами u, u, причём расстояние берётся со знаком + или — в зависимости от того, с какой стороны от у расположена точка М'. Если форма (2) знакоопределённая, то поверхность

в достаточно малой окрестности точки М располагается по одну сторону от касательной плоскости g, и в этом случае точка М поверхности называется эллиптической (рис. 1 ). Если форма (2) знакопеременная, то поверхность в окрестности точки М располагается по разные стороны от плоскости g, и точка М тогда называется гиперболической (рис. 2 ). Если форма (2) знакоопределённая, но принимает нулевые значения (при не равных одновременно нулю du и du ), то точка М называется параболической (на рис. 3 показан один из примеров строения поверхности в окрестности параболической точки).

Более точная характеристика пространственной формы поверхности может быть получена с помощью исследования геометрических свойств линий на поверхности. Пусть М — некоторая точка поверхности S и n — единичный вектор нормали к поверхности в М. Линия (L ) пересечения S с плоскостью, проходящей через n в направлении

 называется нормальным сечением в этом направлении, а ее кривизна — нормальной кривизной 1/R, которая вычисляется по формуле:

.

Нормальная кривизна поверхности в данной точке М в данном направлении

 может рассматриваться как мера искривлённости поверхности в М в направлении
. Экстремальные значения нормальной кривизны в данной точке называется главными кривизнами, а соответствующие направления на поверхности — главными направлениями. Кривизна произвольного нормального сечения в данной точке связана простым соотношением с главными кривизнами (см. Эйлера формулы ). Если главная кривизны в точке М различны, то в этой точке существуют два различных главных направления. Линии, направления которых в каждой точке являются главными, называются линиями кривизны. Направления, в которых нормальная кривизна равна нулю, называются асимптотическими, а линии, имеющие в каждой точке асимптотическое направление, — асимптотическими линиями. Поверхность, состоящая из эллиптических точек (например, сфера), не имеет асимптотических линий. Поверхность, состоящая из гиперболических точек, имеет два семейства асимптотических линий (например, две системы прямолинейных образующих однополостного гиперболоида). Поверхность, состоящая из параболических точек, имеет одну систему асимптотических линий — систему прямолинейных образующих. Дальнейшее изучение свойств произвольных линий на поверхности (в первую очередь кривизн линий) тесно связано с кривизнами нормальных сечений. Кривизна k в данной точке М произвольной линии Г может быть вычислена по формуле:

,

где kn кривизна нормального сечения L в точке М в направлении касательной к Г, а q — угол между главными нормалями к Г и L в этой точке (см. Мёнье теорема ).

Поверхности, между точками которых можно установить такое взаимно однозначное соответствие, что длины соответствующих линий равны, называются изометричными. Изометричные поверхности имеют одинаковую внутреннюю геометрию, но их пространственное строение может быть различным и главные кривизны в соответствующих точках у них могут быть также различными (например, окрестность точки на плоскости изометрична некоторой окрестности точки на цилиндре, но имеет иную пространственную структуру). Однако произведение К главных кривизн 1/R1 и 1/R2 в точке М не меняется при изометричных преобразованиях поверхности (теорема Гаусса, 1826) и может служить внутренней мерой искривлённости поверхности в данной точке. Величина К называется полной (или гауссовой) кривизной поверхности в точке М и выражается соотношением:

, (2)

которое называется формулой Гаусса (полная кривизна в соответствии с теоремой Гаусса может быть выражена только через коэффициенты первой квадратичной формы и их производные). Приведённая выше классификация точек регулярной поверхности может быть сопоставлена со значениями полной кривизны: в эллиптической точке кривизна положительна, в гиперболической — отрицательна и в параболической — равна нулю.

Во многих вопросах П. т. рассматривается другая характеристика искривлённости поверхности — т. н. средняя кривизна, равная полусумме главных кривизн поверхности. Так, например, одним из объектов исследований П. т. являются минимальные поверхности , средняя кривизна которых в каждой точке равна нулю.

Поделиться:
Популярные книги

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

Виктор Глухов агент Ада. Компиляция. Книги 1-15

Сухинин Владимир Александрович
Виктор Глухов агент Ада
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Виктор Глухов агент Ада. Компиляция. Книги 1-15

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Бестужев. Служба Государевой Безопасности. Книга третья

Измайлов Сергей
3. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга третья

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7