Большая Советская Энциклопедия (СС)
Шрифт:
Важный итог развития советской теплотехники 40-х гг. — практический переход к производству пара сверхвысоких параметров: на ТЭЦ ВТИ был пущен экспериментальный котельный агрегат на 29,3 Мн/м2и 600 °С. В 1950 Подольский завод выпустил первый высокопроизводительный барабанный котёл на высокие параметры пара, прямоточный котёл, оборудованный шахтными мельницами; выпуск котлов, рассчитанных на повышенные параметры пара, начали и другие заводы.
Переход к высоким и сверхвысоким параметрам пара потребовал дальнейших теоретических исследований. В 1951 развернулись работы по вопросам молекулярного переноса энергии и по исследованию принципиальных особенностей процессов тепло- и массообмена. Начало 50-х гг. отмечено дальнейшим прогрессом энергомашиностроения. ЛМЗ выпустил конденсационную одновальную паровую турбину мощностью 150 Мвт при 3000 об/мин на 16,6 Мн/м2 и 550 °С.
К концу 50-х гг. установленная мощность ТЭС в СССР была увеличена
В конце 60-х гг. и начале 70-х гг. началось освоение более крупных энергоблоков единичной мощностью 500 и 800 Мвт для ТЭС суммарной мощностью по 4—6 Гвт (в районах Экибастузского и Канско-Ачинского угольных месторождений). На очереди сооружение ещё более крупных электростанций с энергоблоками-гигантами по 1,2 Гвт. В 1975 состоялась закладка главного корпуса под первый блок-гигант на Костромской ГРЭС.
Значит. увеличение доли газа в топливном балансе СССР и высокая эффективность этого вида топлива делают целесообразным использование в теплоэнергетике газотурбинных установок (ГТУ). В СССР первые работы по ГТУ были осуществлены в начале 30-х гг. (Г. И. Зотиков, В. В. Уваров), тогда же под рук. В. М. Маковского была спроектирована первая советская газовая турбина. Основное направление развития газотурбостроения — повышение мощности установок и усовершенствование технологии производства жароупорных сталей. Экономический эффект внедрения газотурбинных станций зависит от мощности установок и температуры газа на входе в турбину. При мощности 50 Мвт и температуре газа на входе 650—750 °С ГТУ становятся конкурентоспособными по сравнению с лучшими паровыми установками. Ещё более экономичными являются парогазовые установки (ПГУ), разработка которых была начата в ЦКТИ (А. Н. Ложкин, А. А. Канаев) в 1945—47. В середине 70-х гг. в эксплуатации на Невинномысской ГРЭС находится ПГУ мощностью 200 Мвт.
Широкое развитие в СССР получила теплофикация. По тепловым нагрузкам, мощностям ТЭЦ 11 котельных, удельному отпуску тепла, длине тепловых сетей СССР значительно опережает другие страны мира. Централизованные мощные источники тепла покрывают около 75% всей тепловой нагрузки городов и промышленных районов страны (из них ТЭЦ — почти половину нагрузки).
За годы развития теплоэнергетики в СССР сформировались и выросли многочисленные научные коллективы. Выдающуюся роль в вопросах современной теплоэнергетики играют работы В. П. Глушко, Н. А. Доллежаля, В. А. Кириллина, М. А. Стыриковича, С. А. Христиановича, А. Е. Шейндлина, Г. Н. Кружилина и мн. др. Основные исследования по вопросам теплоэнергетики проводятся в Государственном научно-исследовательском энергетическом институте им. Г. М. Кржижановского, Всесоюзном научно-исследовательском теплотехническом институте им. Ф. Э. Дзержинского (ВТИ), Московском энергетическом институте (МЭИ), Центральном котлотурбинном институте им. И. И. Ползунова (ЦКТИ, Ленинград), институте теплоэнергетики АН УССР (Киев), Всесоюзном научно-исследовательском и проектном институте энергетической промышленности (ВНИПИ Энергопром), в институте «Теплоэнергопроект» (ТЭП, оба в Москве), на ряде заводов энергетического машиностроения и др.
См. также Теплоэнергетика, Теплотехника.
Ядерная энергетика. Развитие ядерной энергетики как самостоятельной отрасли энергетического производства берёт начало с пуска в 1954 в г. Обнинске (Калужская область) первой в мире атомной электростанции (АЭС) мощностью 5 Мвт (Обнинская АЭС). Работы по созданию АЭС, проводимые под общим руководством И. В. Курчатова, были выполнены за весьма короткий срок — 4,5 года. Опыт строительства и эксплуатации Обнинской АЭС был обобщён в докладе, представленном Советским Союзом в 1955 на 1-й Международной конференции по мирному использованию атомной энергии, и показал реальную возможность эффективного использования новых энергетических ресурсов в мирных целях. Этот опыт послужил основой для дальнейшего успешного развития ядерной энергетики в СССР.
Период с 1954 до конца 60-х гг. характеризовался разработкой, сооружением и эксплуатацией единичных опытно-промышленных АЭС относительно небольшой мощности. В результате опытной проверки было отобрано несколько типов ядерных реакторов на тепловых нейтронах и АЭС, наиболее соответствующих в техническом и экономическом отношении задачам крупномасштабного ядерного энергетического производства. Так, уран-графитовый реактор канального типа (замедлитель — графит, теплоноситель — вода, протекающая под давлением через каналы в активной зоне), примененный на Обнинской АЭС, стал принципиальной конструктивной основой 1-го (1964) и 2-го (1967) энергоблоков Белоярской АЭС им. И. В. Курчатова мощностью соответственно 100 и 200 Мвт. Другим типом ядерного реактора, получившим наибольшее развитие в тот же период, был водо-водяной энергетический реактор (ВВЭР) корпусного типа (замедлитель нейтронов — вода, одновременно отводящая тепло от тепловыделяющих элементов, размещенных в стальном корпусе). Опытно-промышленные реакторы такого типа были установлены на 1-м и 2-м энергоблоках Нововоронежской АЭС им. 50-летия СССР (пущены в 1964 и 1969, их мощность соответственно 210 и 365 Мвт).
Успешная
В соответствии с решениями 25-го съезда КПСС в 1976—80 предполагается продолжить строительство АЭС с реакторами мощностью 1—1,5 Гвт, обеспечить ввод в действие на АЭС мощности в размере 13—15 Гвт (примерно пятая часть от всей электрической мощности, вводимой за пятилетие) при опережающем развитии ядерной энергетики в Европейской части СССР. Для выполнения этих задач предусматривается организовать серийное производство для АЭС реакторов на тепловых нейтронах и турбоагрегатов к ним единичной мощностью не менее 1 Гвт, а также осуществить разработку комплектного оборудования для энергоблоков на тепловых нейтронах мощностью до 1,5 Гвт.
Одним из важнейших направлений развития ядерной энергетики является реализация возможности наиболее рационального использования природных запасов урана и тория. В современных реакторах на тепловых нейтронах энергия ядерного топлива используется лишь на несколько процентов. Отработанное топливо можно использовать повторно (и многократно), очистив его от продуктов деления и шлаков; при этом расход естественного урана сокращается в 2—3 раза. Однако практически такая задача может быть осуществлена лишь тогда, когда отработанного топлива накопится достаточное количество. Реакторы на быстрых нейтронах позволяют существенно (в десятки раз) повысить эффективность использования ядерного сырья. В реакторах этого типа наряду с расходованием ядерного топлива осуществляется его расширенное воспроизводство за счёт вовлечения в энергетический цикл 238U. После создания экспериментальных и опытных образцов реакторов в 1973 в г. Шевченко (Казахская ССР) была пущена опытно-промышленная АЭС с реактором на быстрых нейтронах мощностью 350 Мвт (БН-350). Для 3-го энергоблока Белоярской АЭС ведётся строительство реактора на быстрых нейтронах мощностью 600 Мвт (БН-600). В 1976—1980 строительство и освоение реакторов такого типа предполагается вести ускоренными темпами.
Наряду с исследованиями в области применения ядерных реакторов для производства электрической энергии важное значение в СССР отводится проблеме использования ядерной энергии для обеспечения тепловой энергией бытовых и промышленных предприятий, опреснения воды, проведения высокотемпературных технологических процессов (например, в металлургии), получения химических продуктов и для других народно-хозяйственных целей. Успешно действует двух целевая АЭС в г. Шевченко, представляющая собой первую в мире ядерную энергетическую установку с реактором на быстрых нейтронах в комбинации с крупной опреснительной установкой (120 000 м3дистиллята в сутки). Построена 1-я атомная теплоэлектроцентраль (АТЭЦ) — Билибинская (48 Мвт), снабжающая потребителей не только электрической энергией, но и тепловой. Опыт эксплуатации этой станции позволит приступить к подготовительным работам по широкому использованию ядерной энергии для целей теплофикации, а также решить важнейшую задачу т. н. малой энергетики — обеспечить энергией труднодоступные и удалённые районы страны. Для районов, находящихся вдали от действующих энергосистем, разрабатываются также малогабаритные блочные ядерно-энергетические установки. В 1961 сдана в эксплуатацию крупноблочная транспортабельная атомная электростанция ТЭС-3 с водо-водяным реактором мощностью 1,5 Мвт, используемая в качестве исследовательской базы для создания установок подобного типа. Построена экспериментальная блочная ядерная энергетическая установка с органическим теплоносителем и замедлителем АРБУС (750 квт), создана атомная электростанция АБВ-1,5 с ядерным реактором водо-водяного типа мощностью 1,5 Мвт.