Большая Советская Энциклопедия (СС)
Шрифт:
Советские учёные внесли значительный вклад в развитие вычислит. техники, причём первые крупные достижения в данной области связаны с созданием аналоговых устройств. В СССР были разработаны основы построения сеточных моделей (С. А. Гершгорин, 1927) и предложена идея электродинамического аналога (Н. Минорский, 1936). В 40-х гг. была начата разработка электронных ПУАЗО на переменном токе и первых ламповых интеграторов (Л. И. Гутенмахер). В 1949 был построен ряд аналоговых вычислительных машин на постоянном токе (под руководством В. Б. Ушакова, Трапезникова, Котельникова и С. А. Лебедева).
Среди средств современной вычислительной техники доминирующее положение занимают универсальные электронные ЦВМ. Первая в СССР электронная ЦВМ (МЭСМ) была построена в 1950. В 1952 была разработана ЭВМ БЭСМ — самая быстродействующая (по тому времени) в Европе (8 тыс. операций в сек). Проекты МЭСМ и БЭСМ были разработаны под рук. Лебедева. В 1952 была построена ЦВМ «М-2» (под руководством И. С. Брука). Серийное производство
В развитии программирования существенную роль сыграл операторный метод (А. А. Ляпунов, 1952—58), применение которого позволило расчленить и формализовать процесс составления программы.
Операторный метод стал основой разработки формальных методов изучения программы и проблемно-ориентированных алгоритмических языков. Выполнен ряд крупных работ по вычислительной математике (А. А. Дородницын, Бусленко, С. С. Лавров, Г. И. Марчук и др.) и математическому обеспечению ЦВМ (Глушков, А. П. Ершов, М. Р. Шура-Бура и др.).
В начале 60-х гг. советскими учёными был предложен ряд концепций, реализация которых началась в 70-х гг. Таковы, например, концепции создания государственной сети вычислительных центров и иерархической сети автоматизированных систем управления народным хозяйством СССР (Глушков); концепция семейства ЭВМ, совместимых по математическому обеспечению и внешним устройствам (Рамеев); концепция вычислительной среды, т. е. набора однородных и универсальных цифровых автоматов с программной настройкой (Э. В. Евреинов и Ю. Г. Косарев). В 60-х гг. И. Я. Акушским и Д. И. Юдицким были получены важные результаты в области организации ЭВМ, использующих систему счисления в остаточных классах, 70-е гг. — период наиболее значительных разработок в области вычислительной техники. В 1972 начат выпуск ЦВМ Единой системы электронных вычислительных машин (ЕС ЭВМ), в разработке которой участвовало большинство стран СЭВ. ЕС ЭВМ представляет собой серию универсальных ЦВМ 3-го поколения (на интегральных схемах) с широким диапазоном производительности (от 10 тыс. до 2 млн. операций/сек). Косвенным показателем значения вычислительной техники для народного хозяйства СССР может служить доля средств вычислительной техники в общем объёме производства приборов и средств автоматизации: если в 1960 она составляла всего 8%, то в 1975 — 69%.
Характерная особенность развития технической кибернетики в СССР в конце 60-х — начале 70-х гг.— широкое использование вычислительной техники в системах класса «человек — машина», в том числе в автоматизированных системах управления (АСУ). В рамках технической кибернетики проводятся исследования и решаются задачи, относящиеся главным образом к инженерным уровням управления производством (управлению агрегатом, технологическим процессом, цеховой системой). Ведущими (по кол-ву реализованных систем и используемых в них ЭВМ) являются АСУ, создаваемые в различных отраслях экономики, и АСУ технологическими процессами (АСУТП). Первые такие системы начали создаваться в СССР в конце 50-х — начале 60-х гг. В 1962 была создана одна из первых в мире систем с непосредственным цифровым управлением технологическими процессами (АСУТП «Автооператор» на Лисичанском химическом комбинате). Ряд наиболее удачно разработанных и внедрённых в 60-х гг. АСУ (например, АСУ Ленинградского оптико-механического объединения, Московского завода «Фрезер», Львовского телевизионного завода, Барнаульского радиозавода) принесли значительный экономический эффект. Всего за 1966—70 в СССР было введено в действие 370 автоматизированных систем управления предприятием (АСУП) и 174 АСУТП. В начале 70-х гг. проектированием, разработкой и созданием АСУ было занято около 40 тыс. специалистов. Всего в 1971—75 было введено в действие (полностью или частично) около 1800 АСУП и около 700 АСУТП на базе ЭВМ. С начала 70-х гг. осуществляется план мероприятий по созданию Общегосударственной автоматизированной системы сбора и обработки информации для учета, планирования и управления народным хозяйством (ОГАС). Основной фикцией ОГАС должно
Планами развития народного хозяйства СССР предусмотрено дальнейшее расширение работ по созданию приборов и средств автоматизации для применения в различных отраслях промышленности, на транспорте, в энергетике, коммунальном хозяйстве и т. д.; увеличение выпуска средств вычислительной техники, универсальных и управляющих вычислительных комплексов, технологического оборудования с программным управлением, автоматических устройств регистрации и передачи данных для АСУТП и систем оптимального управления в отраслях народного хозяйства.
В 70-х гг. техническая кибернетика и вычислит. техника как научные дисциплины входят в учебные программы более чем 200 вузов, а значительные по масштабам исследования в данной области проводятся в нескольких десятках НИИ и вузов, в крупнейших вычислительных центрах страны [Институте проблем управления, Вычислительном центре АН СССР (оба в Москве), Институте кибернетики (Киев), Вычислительном центре Сибирского отделения АН СССР (Новосибирск), Институте автоматики и процессов управления Дальневосточного научного центра АН СССР (Владивосток) и др.].
Периодические издания: «Известия АН СССР. Техническая кибернетика» (с 1963), «Автоматика и телемеханика» (с 1936), «Проблемы передачи информации» (с 1965), «Кибернетика» (с 1965), «Управляющие машины и системы» (с 1972), «Автоматика и вычислительная техника» (Рига, с 1967) и др.
См. также Автоматизация производства, Автоматическое управление, Вычислительная техника, Кибернетика техническая, Оптимальное управление, Программное управление, Регулирование автоматическое, Сложная система, Управления автоматизированная система, Управление в технике, Управляющая машина, Цифровая вычислительная машина.
И. А. Апокин.
Машиноведение и технология производства машин
Машиностроение как комплекс отраслей тяжёлой промышленности, производящих орудия труда, предметы потребления и продукцию оборонного назначения, в наибольшей мере определяет технический прогресс и эффективность народного хозяйства (см. в разделе Промышленность). В данной статье рассмотрены наиболее общие проблемы машиноведения (некоторые вопросы освещены также в статьях БСЭ Автоматическое управление и Надёжность) и технологии производства машин. (Развитию отдельных отраслей машиностроения в БСЭ посвящен ряд статей, например Машиностроение, Тракторостроение и др.)
Машиноведение. Теория машин в механизмов. Эволюция машиностроения от отдельных машин неавтоматического действия до их автоматических систем отражена в развитии важнейших направлений теории машин и механизмов. Трудами П. Л. Чебышёва в 60-х гг. 19 в. (синтез шарнирных механизмов и др.), П. О. Сомова в 80-х гг. 19 в. (пространственные кинематические цепи, решение обобщённой задачи о структуре кинематических цепей) заложены фундаментальные основы этой теории. В начале 20 в. были созданы теория структуры и классификации механизмов (Л. В. Ассур) и основы винтового метода кинематического анализа механизмов (А. П. Котельников). Важное значение имело развитие теории зубчатых механизмов Х. И. Гохманом в конце 19 в., Н. И. Мерцаловым в начале 20 в. и др. Ими разработаны новые виды зубчатых зацеплений, созданы инженерные методы их расчёта и проектирования. Новый этап в науке о машинах начался после Октябрьской революции. В 20-х гг. Мерцаловым, а затем И. И. Артоболевским, Г. Г. Барановым и др. решены задачи кинематики общего случая пространственного семизвенного механизма, а в 30-х гг. Н. Г. Бруевичем — задача кинетостатики пространственных механизмов. В 30-х гг. В. В. Добровольский, И. И. Артоболевский выделили 5 семейств механизмов в зависимости от числа степеней свободы и количества условий связи и указали общие методы решения задач анализа механизмов, а также предложили систему их классификации. Работами по классификации, кинематике и кинетостатике плоских и пространственных механизмов советская школа прочно утвердила своё ведущее место в этой области мировой науки. В 30—50-е гг. И. И. Артоболевским и его школой создана обобщающая классификация механизмов по их структурным, кинематическим и динамическим свойствам, что позволило не только привести в систему существующие механизмы, но и открыть их новые виды. Изучение влияния допусков и неточностей при изготовлении деталей на кинематику и динамику механизмов вызвало к жизни в 40-е гг. «теорию реальных механизмов», основные положения которой применительно к плоским и пространственным механизмам разработаны Бруевичем. В 40—50-х гг. дальнейшее развитие получила теория синтеза механизмов (И. И. Артоболевский, Добровольский и др.). Методы синтеза, например рычажных и кулачковых механизмов, используются при проектировании двигателей, станков, текстильных, сельскохозяйственных и других машин. С 50-х гг. начались работы по анализу и синтезу механизмов с гидравлическим, пневматическим и электрическим устройствами (С. Н. Кожевников, Е. В. Герц и др.), а в 60-х гг.— механизмов с электронными и фотоэлектронными устройствами.