Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (СТ)
Шрифт:

Здесь Н (р, q ) — функция Гамильтона подсистемы, М — масса частицы газа, а суммирование производится по всем составляющим импульсов всех частиц термостата. Чтобы найти функцию распределения для подсистемы, нужно проинтегрировать это выражение по координатам и импульсам частиц термостата. Если затем учесть, что число частиц в термостате много больше, чем в подсистеме, и устремить N ®yen, считая, что отношение E/N постоянно и равно 3 /2kT , то для функции распределения подсистемы получится выражение:

(6)

Величина T в этой формуле имеет смысл температуры, k = 1,38x10– 16эрг/град — постоянная Больцмана. [Условие E/N ® 3 /2kT для газа в термостате соответствует, как и должно быть, формуле (13) для идеального газа; см. ниже.] Нормировочный коэффициент eF/kT определяется из условия нормировки (4):

(6a)

Распределение (6) называется каноническим распределением Гиббса, или просто каноническим распределением (см. Гиббса распределение ), а величина Z — статистическим интегралом. В отличие от микроканонического распределения, энергия системы в распределении Гиббса не задана. Состояния системы сосредоточены в тонком, но конечной толщины слое вокруг энергетической поверхности, соответствующей среднему значению энергии, что означает возможность обмена энергией с термостатом. В остальном в применении к определённому макроскопическому телу оба распределения приводят по существу к одним и тем же результатам. Разница лишь в том, что при использовании микроканонического распределения все средние значения оказываются выраженными через энергию тела, а при использовании канонического распределения — через температуру. Если тело состоит из двух невзаимодействующих частей 1 и 2 с функциями Гамильтона H1 и H2 , то для всего тела Н = H1 + H2 и, согласно (6), функция распределения тела разбивается на произведение функций распределения для каждой из частей, так что эти части оказываются статистически независимыми. Это требование вместе с теоремой Лиувилля можно положить в основу вывода распределения Гиббса, не обращаясь к микроканоническому распределению. Формула (6) справедлива для систем, которые описываются классической механикой.

В квантовой механике энергетический спектр системы конечного объёма дискретен. Вероятность подсистеме находиться в состоянии с энергией En даётся формулой, аналогичной (6):

, (7)

причем условие нормировки

 можно переписать в виде:

. (8)

Величина Z называется статистической суммой системы; сумма в выражении (8) берётся по всем состояниям системы.

Для системы, с достаточной точностью описывающейся классической механикой, в формуле (8) можно перейти от суммирования по состояниям к интегрированию по координатам и импульсам системы, При этом на каждое квантовое состояние приходится в фазовом пространстве «клетка» (или «ячейка») объемом

, где
 — Планка постоянная . Иными словами, суммирование по n сводится к интегрированию по
. Следует также учесть, что ввиду тождественности частиц в квантовой механике при их перестановке состояние системы не меняется. Поэтому, если интегрировать по всем р и q , необходимо поделить интеграл на число перестановок из N частиц, т. е. на N ! Окончательно классический предел для статистической суммы имеет вид:

(8а)

Он отличается множителем от чисто классического условия нормировки (6а), что приводит к дополнительному слагаемому в F .

Приведенные формулы относятся к случаю, когда число частиц в подсистеме задано. Если выбрать в качестве подсистемы определенный элемент объёма всей системы, через поверхность которого частицы могут покидать подсистему и возвращаться в неё, то вероятность нахождения подсистемы в состоянии с энергией En и числом частиц Nn даётся формулой большого канонического распределения Гиббса:

, (9)

в которой дополнительный параметр m — химический потенциал , определяющий среднее число частиц в подсистеме, а величина W определяется из условия нормировки [см. формулу (11)].

Статистическое истолкование термодинамики. Важнейший результат С. ф. — установление статистического смысла термодинамических величин. Это даёт возможность вывести законы термодинамики из основных представлений С. ф. и вычислять термодинамические величины для конкретных систем. Прежде всего термодинамическая внутренняя энергия отождествляется со средней энергией системы. Первое начало термодинамики получает тогда очевидное истолкование как выражение закона сохранения энергии при движении составляющих тело частиц.

Далее, пусть функция Гамильтона системы зависит от некоторого параметра l (координаты стенки сосуда, в который заключена система, внешнего поля и т.п.). Тогда производная

 будет обобщённой силой , соответствующей этому параметру, а величина
 после усреднения даёт механическую работу, совершаемую над системой при изменении этого параметра. Если продифференцировать выражение
 для средней энергии
 системы с учетом формулы (6) и условия нормировки, считая переменными l и T и учитывая, что величина F тоже является функцией от этих переменных, то получится тождество:

.

Согласно сказанному выше, член, содержащий d l, равен средней работе dA , совершаемой над телом. Тогда последний член есть получаемое телом тепло. Сравнивая это выражение с соотношением dE = dA + TdS , представляющим собой объединённую запись первого и второго начал термодинамики (см. Второе начало термодинамики ) для обратимых процессов , находим, что T в (6) действительно равна абсолютной температуре тела, а производная

 — взятой с обратным знаком энтропииS . Это означает, что F есть свободная энергия тела, откуда выясняется её статистический смысл.

Особое значение имеет статистическое истолкование энтропии, которое следует из формулы (8). Формально суммирование g этой формуле производится по всем состояниям с энергией En , но фактически ввиду малости флуктуаций энергии в распределении Гиббса существенно лишь относительно небольшое их число с энергией вблизи средней энергии. Число этих существенных состояний

естественно определить поэтому, ограничив суммирование в (8) интервалом
, заменив En на среднюю энергию
 и вынося экспоненту из-под знака суммы. Тогда сумма даст
 и примет вид.

Поделиться:
Популярные книги

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Энциклопедия лекарственных растений. Том 1.

Лавренова Галина Владимировна
Научно-образовательная:
медицина
7.50
рейтинг книги
Энциклопедия лекарственных растений. Том 1.

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Warhammer 40000: Ересь Хоруса. Омнибус. Том II

Хейли Гай
Фантастика:
эпическая фантастика
5.00
рейтинг книги
Warhammer 40000: Ересь Хоруса. Омнибус. Том II

Пекло. Дилогия

Ковальчук Олег Валентинович
Пекло
Фантастика:
боевая фантастика
6.17
рейтинг книги
Пекло. Дилогия

Хорошая девочка

Кистяева Марина
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Хорошая девочка

Тайны ордена

Каменистый Артем
6. Девятый
Фантастика:
боевая фантастика
попаданцы
7.48
рейтинг книги
Тайны ордена

Соблазны бытия

Винченци Пенни
3. Искушение временем
Проза:
историческая проза
5.00
рейтинг книги
Соблазны бытия

Кодекс Крови. Книга ХIII

Борзых М.
13. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIII