Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (СВ)
Шрифт:

Рис. 4а. Сверло спиральное с направляющим центром и подрезателем для обработки древесины и древесных материалов.

Сверлящие губки

Сверля'щие гу'бки, клионы (Clionidae), семейство из отряда четырёхлучевых губоколо С. г. способны проделывать извилистые ходы в твёрдом известковом субстрате. Встречаются обычно на мелководье в тёплых и умеренных морях. Около 20 видов. В СССР обнаружены в Японском, Чёрном, Белом и Баренцевом морях. Полагают, что механизм сверления С. г. состоит в одновременном воздействии на субстрат двуокисью углерода, выделяемой отдельными поверхностными клетками губки, и механических усилий, развиваемых этими клетками. С. г. — опасные вредители устричных банок: поселяясь на раковинах устриц и проделывая в них ходы, они вызывают т. н. пряничную болезнь устриц, приводящую к их гибели. Одно из средств борьбы — кратковременное погружение пораженных устриц в пресную воду.

Раковина устрицы, пораженная сверлящей губкой. Часть верхнего слоя раковины удалена, видны хорды, проделанные

губкой.

Раковина устрицы, пораженная сверлящей губкой. На поверхности раковины видны отверстия, просверлённые губкой.

Сверлящие животные

Сверля'щие живо'тные, морские беспозвоночные животные, способные протачивать ходы или углубления в древесине, скалах, коралловых рифах и даже в железных сваях (морской ёж Strongylocentrotus purpuratus). Морские древоточцы: главным образом двустворчатые моллюски семейства терединид — корабельный червьи ксилофаги из семейства фоладид, рачки лимнория, сферома из отряда равноногих и хелюра из бокоплавов, погонофоры Sclerolinum. Камнеточцы: двустворчатые моллюски морской финик — литофага, морское сверло — фолада и др., сверлящая губка — клиона, некоторые многощетинковые черви из семейства спионид, усоногий рачок литотрия, некоторые морские ежи. Брюхоногие моллюски насса и натика просверливают отверстия в раковинах моллюсков, которыми питаются. Многие С. ж. причиняют большой вред, разрушая подводные части деревянных судов, сваи и другие подводные сооружения.

Сверрир Сигурдарсон

Све'ррир Сигурдарсон (Sverrir Sigurdarsson), Сверре Сигурдсон (Sverre Sigurdsson) (около 1150—9.3.1202, Берген), норвежский король в 1184—1202. Священник с Фарерских островов, С., выдавая себя за незаконного сына норвежского короля Сигурда Мунна, возглавил в 1177 движение биркебейнеров. Разбив военные силы своих противников (короля Магнуса Эрлингсона, которого поддерживали крупные землевладельцы и епископат), захватил престол. Папство заняло враждебную С. позицию, он был отлучен от церкви (1198). Опираясь на новый слой служилых людей, С. укрепил королевскую власть. Подавлял крестьянские восстания.

Сверташки

Сверта'шки (Anilius), род пресмыкающихся семейства вальковатых змей. 1 вид — коралловая С. (A. scytale); встречается в тропической Америке. Окраска — на кораллово-красном фоне многочисленные чёрные поперечные полосы. Длина тела до 80 см. Ведёт роющий образ жизни. Питается слепозмейками, дождевыми червями и личинками различных членистоногих. Живородяща.

Коралловая сверташка.

Свёртка функций

Свёртка фу'нкцийf1(x) и f2(x), функция

С. ф. f1(x) и f2(x) обозначают f1*f2. Если f1 и f2 являются плотностями вероятности независимых случайных величин Х и Y, то f1*f2 есть плотность вероятности случайной величины Х+Y. Если Fk (x) — Фурье преобразование функции fk(х), то есть

то F1(x) F2(x) является преобразованием Фурье функции f1*f2. Это свойство С. ф. находит важные приложения в теории вероятностей (см. Характеристическая функция). Аналогичным свойством обладает С. ф. и относительно Лапласа преобразования, что находит широкие приложения в операционном исчислении. Операция свёртывания функций перестановочна и сочетательна, то если f1*f2=f2*f1 и f1*(f2*f3)=(f1*f2)*f3. Поэтому её можно рассматривать как вид умножения функций, что даёт возможность применить к изучению С. ф. теорию нормированных колец.

Свёртывание крови

Свёртывание кро'ви, превращение жидкой крови в эластичный сгусток; защитная реакция организма человека и животных, предотвращающая потерю крови. С. к. протекает как последовательность биохимических реакций, совершающихся при участии факторов свёртывания крови (ФСК) — ряда белков плазмы и ионов Ca2+. ФСК обозначают римскими

цифрами: I — фибриноген, II — протромбин, III — тромбопластин, IV — кальций, V и VI — соответственно плазменный и сывороточный акцелераторы-глобулины, VII — конвертин, VIII — антигемофильный глобулин А, IX — антигемофильный глобулин В (т. н. Кристмас-фактор), Х — Стюарт — Проувер-фактор (аутопротромбин С, тромботропин), XI — плазменный предшественник тромбопластина, XII — фактор Хагемана, XIII — фибрин-стабилизирующий фактор (фибринолигаза). Ряд компонентов системы С. к. содержится в форменных элементах крови. Так, в тромбоцитахнаходятся фактор 3 кровяных пластинок (предшественник тромбопластина), аналоги факторов V и XIII, фибриногена и др. Ведущие реакции С. к., протекающие с участием ферментов: образование активного тромбопластина, превращение протромбина в тромбин; превращение фибриногена в фибрин; стабилизация фибрина. Основы ферментативной теории С. к. были предложены профессором Юрьевского (ныне Тартуского) университета А. Шмидтом (работы 1872—95). В дальнейшем было установлено, что первая стадия С. к. осуществляется как «внутренней» системой С. к. (тромбопластин образуется из свёртывающих факторов плазмы крови и фактора 3 из разрушающихся тромбоцитов), так и «внешней» (тромбопластин образуется при участии тканевой среды, выделяющейся в результате повреждения тканей) системой С. к. На основе экспериментальных и клинических данных был предложен ряд современных схем С. к., в том числе каскадная схема английского учёного Р. Макферлана (1965—66). Согласно этой схеме, внутренний процесс С. к. начинается с активации фактора XII и превращения его в фактор XIIa. Активация осуществляется при соприкосновении этого белка со смачиваемой поверхностью, при взаимодействии с хиломикронами (липопротеидными частицами крови) или при появлении в кровотоке избытка адреналина, а также при некоторых других условиях. Фактор XIIa вызывает ряд последовательных реакций, в которые вовлекаются присутствующие в плазме крови факторы от XI до V включительно. В итоге образуется кровяной тромбопластин, или протромбиназа.

При проникновении в кровь тканевого предшественника (внешний путь С. к.) активный тромбопластин образуется при участии плазменных факторов V, VII и Х и ионов Ca2+. Кровяная или тканевая протромбиназа осуществляет превращение протромбина (фактор II) в фермент тромбин (фактор IIa). Последний, отторгая от фибриногена пептидные фрагменты, превращает его в фибрин-мономер. Нестабилизированный (растворимый в мочевине и некоторых кислотах) фибрин подвергается ферментативной стабилизации фактором Xllla в присутствии ионов Ca2+. В результате возникает нерастворимый фибрин-полимер, представляющий собой основу кровяного сгустка, или тромба. Cxeмa Макферлана обоснована экспериментально, однако в ней не учтено значение присутствующих в крови естественных антикоагулянтов, а также физиологической регуляции жидкого состояния крови и её свёртывания. У организмов разных видов время С. к. сильно варьирует. Кровь человека, извлечённая из сосудистого русла, в норме свёртывается за 5—12 мин (для регистрации времени С. к. и нарушений С. к. применяется прибор тромбоэластограф). При многих заболеваниях процесс С. к. замедляется, что часто бывает обусловлено недостатком (приобретённым или наследственным) в организме одного или нескольких ФСК. Так, при неусвоении витамина К возникающие кровотечения обусловлены нарушением биосинтеза II, VII, IX и Х ФСК. Тот же эффект может возникнуть при введении в организм избыточных доз антикоагулянтов непрямого действия — антагонистов витамина К, например дикумарина и его производных. Пример врождённого заболевания — недостаток фактора VIII (гемофилия А), наследование которого связано с передачей женской половой хромосомы. Подобное же заболевание может быть обусловлено накоплением образующихся в организме антагонистов фактора VIII или нарушением структуры этого белка. Различные варианты наследственной недостаточности или дефекты в молекулярной структуре известны почти для всех плазменных ФСК. Нарушения регуляции жидкого состояния крови и её свёртывания приходят также к тромбообразованию, т. е. возникновению и стабилизации сгустков крови в сосудистом русле. Возникновение тромба нельзя объяснить только повышением или усилением процесса С. к. Причиной подобных патологических состояний может быть также локальное или общее понижение в организме больного функции противосвёртывающей системы, обеспечивающей регуляцию жидкого состояния крови (см. Тромбоз). Сочетание явлений рассеянного тромбоза и геморрагии может быть обусловлено нарушением регуляторных взаимоотношений свёртывающей и противосвёртывающей систем.

Лит.: Кудряшов Б. А., Проблема регуляции жидкого состояния крови и взаимоотношения свёртывающей, фибринолитической и противосвёртывающей системы, «Успехи физиологических наук», 1970, т. 1, №4; его же, Биологические проблемы регуляции жидкого состояния крови и её свёртывания, М., 1975; Schmidt A., Weitere Beitr"age zur Blutlehre, Wiesbaden, 1895; Macfarlane R. G., The basis of the cascade hypothesis of blood clotting, «Thrombosis et diathesis haemorrhagica», 1966, v. 15, № 3/4; Laki К., Our ancient heritage in blood clotting and some of its consequences, «Annals of the New York Academy of Sciences», 1972, v. 202; Owren P. A., Stormorken H., The mechanism of blood coagulation, «Reviews of Physiology», 1973, v. 68.

Б. А. Кудряшов.

Схема к ст. Свёртывание крови.

Сверхвысокие частоты

Сверхвысо'кие часто'ты (СВЧ), область радиочастот от 300 Мгц до 300 Ггц, охватывающая дециметровые волны, сантиметровые волны и миллиметровые волны (см. Радиоволны). Диапазон СВЧ используется главным образом в радиолокации и радиосвязи, а также в радиоспектроскопии. При освоении диапазона СВЧ понадобилось создание генераторов и усилителей электрических колебаний, основанных на новых принципах: магнетронов, клистронов, ламп бегущей волны и др. Для канализации волн СВЧ были созданы радиоволноводы, специальные типы антенн(см. Сверхвысоких частот техника).

Поделиться:
Популярные книги

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Жандарм

Семин Никита
1. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
4.11
рейтинг книги
Жандарм

Страж Кодекса. Книга IX

Романов Илья Николаевич
9. КО: Страж Кодекса
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Страж Кодекса. Книга IX

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Найденыш

Гуминский Валерий Михайлович
1. Найденыш
Фантастика:
альтернативная история
6.00
рейтинг книги
Найденыш

Неудержимый. Книга VI

Боярский Андрей
6. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга VI

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Младший сын князя. Том 8

Ткачев Андрей Сергеевич
8. Аналитик
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Младший сын князя. Том 8

Измена. Испорченная свадьба

Данич Дина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Измена. Испорченная свадьба

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV