Большая Советская Энциклопедия (СВ)
Шрифт:
Световые приборы
Световы'е прибо'ры, предназначаются для освещения, облучения, световой сигнализации или проекции (см. Светотехника) и делятся на осветительные, облучательные, сигнальные и проекционные. Обычно С. п. состоит из источника оптического излучения (см. Источники света), устройства для перераспределения лучистого потока в пространстве по заданным направлениям, а также конструкционных деталей, объединяющих все части С. п. и обеспечивающих необходимую защиту источника излучения и светоперераспределяющего устройства от механических повреждений и воздействия окружающей среды. С. п. с газоразрядными источниками света могут дополняться устройствами для зажигания лампы и стабилизации её работы.
В зависимости от назначения С. п. используется либо излучение
Для перераспределения светового потока в С. п. используют: направленное отражение света зеркальными отражателями параболоидной (рис., а), эллипсоидной (рис., б) или произвольной (рис., в) формы; направленное пропускание света френелевскими (дисковыми или цилиндрическими) линзами (рис., г), асферическими или конденсорными линзами (рис., д) либо призматическими устройствами (рис., е); диффузное и направленно-рассеянное отражение света диффузными, эмалированными и матированными отражателями (рис., ж); диффузное и направленно-рассеянное пропускание света глушёными (молочными), опаловыми и опалиновыми или матированными рассеивателями (рис., з). Основные светотехнические характеристики С. п. — распределение силы света, яркости и освещённости, а также кпд, равный отношению полезно использованного светового потока к полному световому потоку источника излучения.
Лит.: Карякин Н. А., Световые приборы прожекторного и проекторного типов, М., 1966; Айзенберг Ю. Б., Ефимкина В. Ф., Осветительные приборы с люминесцентными лампами, М., 1968; Трембач В. В., Световые приборы, М., 1972.
В. В. Трембач.
Схематическое изображение световых приборов с различными способами светоперераспределения: прожекторы (а, г), проекторные приборы (б, д), светильники (в, е, ж, з); 1 — источник света; 2 — отражатель; 3 — линза; 4 — рассеиватель. Стрелками показан ход световых лучей.
Световые эталоны
Световы'е этало'ны, меры для воспроизведения, хранения и передачи световых единиц. В качестве С. э. в разное время применялись: пламя свечи или лампы с заданными характеристиками (размеры пламени, топливо и пр.); 1 см2 поверхности платины при температуре затвердевания; электрические лампы накаливания. Различают первичный и вторичные С. э. Первичный С. э. единицы силы света — канделы, постоянный и воспроизводимый на основе законов теплового излучения, осуществлен в виде обладающего свойствами абсолютно чёрного телат. н. полного излучателя (см. рис.) при температуре затвердевания платины: огнеупорная трубочка погружена в металл, расплавляемый токами высокой частоты. Этот С. э. разработан в США, принят по международному соглашению 1 января 1948 и осуществлен в 8 национальных лабораториях. Его яркость 6x105кд/м2, международная согласованность около ±0,6% при внутрилабораторной погрешности ± 0,2%. Вторичные С. э. для единиц силы света, освещённости и для единицы светового потока представляют
В. Е. Карташевская.
Устройство первичного светового эталона: 1 — трубка из плавленой окиси тория ThO2, температура которой поддерживается равной температуре затвердевания платины 2042 К; 2 — тигель из плавленой ThO2 с химически чистой платиной 3; 4 — кварцевый сосуд с засыпкой 5 из ThO2; 6 — смотровое окно; 7 — призма полного внутреннего отражения; 8 — объектив, создающий изображение светящегося отверстия излучателя на диффузной белой пластинке 10; с другой стороны пластинка 10 освещается лампой сравнения 11; 9 — диафрагма. Платина в тигле разогревается токами высокой частоты в индукционной печи (температура плавления ThO2 выше 2042 К). Меняя расстояния между светомерной головкой, полным излучателем и лампой сравнения, добиваются уравнивания освещенностей на двух сторонах пластинки 10. Последнюю часто заменяют фотоэлементом, освещаемым попеременно первичным и вторичным световыми эталонами.
Светогорск
Светого'рск (до 1948 — Энсо), город в Выборгском районе Ленинградской области РСФСР. Расположен на р. Вуокса, близ границы с Финляндией. Ж.-д. станция в 196 км к С.-З. от Ленинграда. ГЭС. Целлюлозно-бумажный комбинат.
Светодальномер
Светодальноме'р, см. Дальномер, Электрооптический дальномер.
Светозарево
Светоза'рево (до 1946 — Ягодина; переименован в честь Светозара Марковича), город в Югославии, в Социалистической Республике Сербии, на р. Белица, притоке Моравы. 29 тыс. жителей (1972). Пищевая промышленность (сахарная, овоще-фруктоконсервная, мясная и пивоваренная). Производство кабеля, инструмента и электротехнических изделий; мебели, кирпично-керамические предприятия. Машиностроительно-электротехнический факультет Белградского университета.
Светоизлучающий диод
Светоизлуча'ющий дио'д, светодиод, полупроводниковый прибор, преобразующий электрическую энергию в энергию оптического излучения на основе явления инжекционной электролюминесценции (в полупроводниковом кристалле с электронно-дырочным переходом, полупроводниковым гетеропереходом либо контактом металл — полупроводник). В С. д. при протекании в нём постоянного или переменного тока в область полупроводника, прилегающую к такому переходу (контакту), инжектируются избыточные носители тока — электроны и дырки; их рекомбинация сопровождается оптическим излучением. С. д. испускают некогерентное излучение, но, в отличие от тепловых источников света, — с более узким спектром, вследствие чего излучение в видимой области воспринимается как одноцветное. Цвет излучения зависит от полупроводникового материала и его легирования. Применяются соединения типа AIII BV и некоторые другие (например, GaP, GaAs, SiC), а также твёрдые растворы (например, GaAs1-xPx, AlxGa1-xAs, Ga1-xlnxP). В качестве легирующих примесей используются: в GaP—Zn и О (красные С. д.) либо N (зелёные С. д.), в GaAs—Si либо Zn и Te (инфракрасные С. д.). Полупроводниковому кристаллу С. д. обычно придают форму пластинки или полусферы.
Яркость излучения большинства С. д. находится на уровне 103кд/м2, у лучших образцов С. д. — до 105кд/м2. Кпд С. д. видимого излучения составляет от 0,01% до нескольких процентов. В С. д. инфракрасного излучения с целью снижения потерь на полное внутреннее отражение и поглощение в теле кристалла для последнего выбирают полусферическую форму, а для улучшения характеристик направленности излучения С. д. помещают в параболический или конический отражатель. Кпд С. д. с полусферической формой кристалла достигает 40%.