Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (ТЕ)
Шрифт:

Лит.: История математики с древнейших времен до начала XIX столетия, т. 2, М., 1970.

Тейлор Джефри Инграм

Те'йлор (Taylor) Джефри Инграм (7.3.1886, Лондон, — 27.6.1975, Кембридж), английский учёный в области механики, член Лондонского королевского общества (1919). Окончил Кембриджский университет (1910). Метеоролог в одной из арктических экспедиций (1913). С 1919 в Кембриджском университете. Профессор по научной работе Лондонского королевского общества (1923—51). В 1944—45 работал в Лос-Аламосской лаборатории (США) над проблемой ядерного взрыва. Основные труды по механике сплошных сред (включая экспериментальные исследования). Т. внёс фундаментальный вклад в теорию турбулентности: развил теорию устойчивости течений вязкой жидкости, теорию турбулентной диффузии,

создал полуэмпирическую теорию турбулентности, исследовал однородную и изотропную турбулентность. Т. принадлежат основополагающие работы по теории дислокаций. Изучал также аэродинамику самолёта и парашюта, околозвуковое обтекание тел, волны в жидкости, вопросы метеорологии, исследовал проблему плавания микроорганизмов и др. Иностранный член АН СССР (1966) и многих др. академий мира.

Соч.: Scientific papers, v. I—4, Camb,, 1958—71; в рус. пер.— О переносе вихрей и тепла при турбулентном движении жидкостей, в сборнике: Проблемы турбулентности, М.— Л., 1936; Результаты исследований движения при больших скоростях, в сборнике: Газовая динамика, М.— Л., 1939; Современное состояние теории турбулентной диффузии, в сборнике: Атмосферная диффузия и загрязнение воздуха, М., 1962.

Лит.: Southwell R. V., G. I. Taylor; a biographical note, в сборнике: Surveys in mechanics, Camb., 1956; McGraw — Hill Modern Men of Science, v. 2, [N. Y., 1968].

Дж. И. Тейлор.

Тейлора ряд

Те'йлора ряд,степенной ряд вида

, (1)

где f (x ) — функция, имеющая при х = а производные всех порядков. Во многих практически важных случаях этот ряд сходится к f (x ) на некотором интервале с центром в точке а:

 (2)

(эта формула опубликована в 1715 Б. Тейлором ). Разность Rn (x ) = f (x ) — Sn (x ), где Sn (x ) — сумма первых n + 1 членов ряда (1), называется остаточным членом Т. р. Формула (2) справедлива, если

. Т. р. можно представить в виде

,

применимом и к функциям многих переменных.

При а = 0 разложение функции в Т. р. (исторически неправильно называемый в этом случае рядом Маклорена; см. Маклорена ряд ) принимает вид:

,

в частности:

 (3)

 (4)

 (5)

 (6)

.(7)

Ряд (3),

являющийся обобщением на случай дробных и отрицательных показателей формулы бинома Ньютона, сходится: при -1< х < 1, если m < -1; при -1< x lb 1, если -1< m < 0; при -1 lb x lb 1, если m > 0. Ряды (4), (5) и (6) сходятся при любых значениях х, ряд (7) сходится при -1< x lb 1.

Функция f (z ) комплексного переменного z, регулярная в точке а, раскладывается в Т. р. по степеням zа внутри круга с центром в точке я и с радиусом, равным расстоянию от а до ближайшей особой точки функции f (z ). Вне этого круга Т. р. расходится, поведение же его на границе круга сходимости может быть весьма сложным. Радиус круга сходимости выражается через коэффициенты Т. р. (см. Радиус сходимости ).

Т. р. является мощным аппаратом для исследования функций и для приближённых вычислений. См. также Тейлора формула .

Лит.: Хинчин А. Я., Краткий курс математического анализа, М., 1953; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969.

Тейлора формула

Те'йлора фо'рмула, формула

 

изображающая функцию f (x), имеющую n– ю производную f (n ) (a ) в точке х = а, в виде суммы многочлена степени n, расположенного по степеням ха, и остаточного члена Rn (x ), являющегося в окрестности точки а бесконечно малой более высокого порядка, чем (x—a ) n [то есть Rn (x ) = an (x )(xa ) n , где an (x ) ® 0 при х ® а ]. Если в интервале между а и х существует (n + 1)-я производная, то Rn (x ) можно представить в видах:

,

где x и x1 — какие-то точки указанного интервала (остаточный член Т. ф. в формах Лагранжа и соответственно Коши). График многочлена, входящего в Т. ф.. имеет в точке а соприкосновение не ниже n-го порядка с графиком функции f (x ). Т. ф. применяют для исследования функций и для приближённых вычислений.

Лит.: Хинчин А. Я., Краткий курс математического анализа, М.. 1953; Фихтенгольц Г. М.. Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М.. 1969.

Поделиться:
Популярные книги

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Надуй щеки! Том 7

Вишневский Сергей Викторович
7. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 7

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Недотрога для темного дракона

Панфилова Алина
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Недотрога для темного дракона

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Развод, который ты запомнишь

Рид Тала
1. Развод
Любовные романы:
остросюжетные любовные романы
короткие любовные романы
5.00
рейтинг книги
Развод, который ты запомнишь

Товарищ "Чума"

lanpirot
1. Товарищ "Чума"
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Товарищ Чума

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Потомок бога 3

Решетов Евгений Валерьевич
3. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Потомок бога 3