Брайан Грин. Ткань космоса: Пространство, время и структура реальности
Шрифт:
Рис 12.2 Последовательное увеличение пространства обнаруживает, что ниже планковской длины пространство становится неузнаваемо бурным вследствие квантовых дрожаний. (Здесь представлены воображаемые увеличительные стекла, каждое из которых увеличивает между 10 и 100 миллионами раз).
Хотя и экзотический в деталях, приблизительный урок, проиллюстрированный Рис. 12.2, суть один из тех, с которым мы уже знакомы: концепции и заключения, существенные на одном масштабе, могут быть не применимыми на всех масштабах. Это ключевой принцип в физике, и один из тех, с которыми мы постоянно встречаемся, хотя и в куда более прозаическом контексте. Возьмем стакан воды. Описание воды как гладкой, однородной жидкости и полезно, и применимо на повседневных масштабах, но это является приближением, которое разрушается, если мы
Даже при этих условиях, что вполне ясно из Рис. 12.2, на мельчайших масштабах гладкий характер пространства и времени, представляемый ОТО, вступает в борьбу с неистовым, дрожащим характером квантовой механики. Основной принцип ОТО Эйнштейна, что пространство и время образуют мягко искривленную геометрическую форму, спотыкается об основной принцип квантовой механики, принцип неопределенности, который подразумевает дикую, буйную, турбулентную окружающую среду на мельчайших масштабах. Ужасный конфликт между центральными идеями ОТО и квантовой механики сделал объединение двух теорий одной из самых трудных проблем, с которыми физики сталкивались в течение последних восьмидесяти лет.
Это имеет значение?
На практике несовместимость между ОТО и квантовой механикой возникла весьма специфическим образом. Если вы используете объединенные уравнения ОТО и квантовой механики, они почти всегда приводят к одному ответу: бесконечности. И в этом проблема. Это бессмыслица. Экспериментаторы никогда не измеряют бесконечное количество чего-либо. Часы никогда не вращаются до бесконечности. Линейки никогда не протягиваются до бесконечности. Калькуляторы никогда не регистрируют бесконечность. Почти всегда бесконечный ответ является бессмысленным. Все это говорит нам, что уравнения ОТО и квантовой механики при их соединении становятся ненормальными.
Отметим, что это совершенно не похоже на напряженность между СТО и квантовой механикой, которая возникала в нашем обсуждении квантовой нелокальности в Главе 4. Там мы нашли, что согласование принципов СТО (в особенности, симметрии между всеми наблюдателями, движущимися с постоянной скоростью) с поведением запутанных частиц требует более полного понимания проблемы квантовых измерений, чем до сих пор было достигнуто (смотрите секцию "Запутанность и СТО: противоположный взгляд" в Главе 4, стр 117–120). Но эта не решенная полностью проблема не приводит к математической несостоятельности или к уравнениям, которые дают бессмысленные ответы. Наоборот, объединенные уравнения СТО и квантовой механики используются, чтобы делать наиболее точно подтвержденные в истории науки предсказания. Тихое напряжение между СТО и квантовой механикой указывает на область, где требуются дальнейшие теоретические изыскания, но оно едва ли влияет на их объединенную предсказательную силу. Не так с взрывоопасным союзом между ОТО и квантовой механикой, в котором вся предсказательная сила потеряна.
Тем не менее, вы все еще можете спросить, имеет ли реальное значение несовместимость между ОТО и квантовой механикой. Безусловно, объединенные уравнения могут приводить к нонсенсу, но когда вообще вам реально может понадобиться использовать их вместе? Годы астрономических наблюдений показали, что ОТО описывает макромир звезд, галактик и даже целого расширяющегося космоса с впечатляющей точностью; десятилетия экспериментов подтвердили, что квантовая механика делает то же самое для микромира молекул, атомов и субатомных частиц. Поскольку каждая теория чудесно работает в своей собственной области, зачем беспокоиться об их объединении? Почему не удерживать их разделенными? Почему не использовать ОТО для вещей, которые большие и массивные, квантовую механику для вещей, которые мелкие и легкие, и прославлять впечатляющие достижения человечества в успешном понимании такого широкого диапазона физических явлений?
На самом деле, это как раз то, что большинство физиков и делали с первых десятилетий двадцатого века, и никто не отрицает, что это, несомненно, был плодотворный подход. Прогресс науки, сделанный в этой несоединенной системе, впечатляет. Тем не менее, есть несколько причин, почему антагонизм между ОТО и квантовой механикой должен быть сглажен. Таких причин две.
Первое, по-хорошему, тяжело поверить, что глубочайшее понимание вселенной заключается в неясном союзе между двумя мощными теоретическими схемами, которые взаимно несовместимы. Это ничто иное, как если бы вселенная оборудовалась линией на песке, разделяющей вещи, которые правильно описываются квантовой механикой, от вещей, которые правильно описываются ОТО. Разделение вселенной на две обособленные реальности кажется как искусственным, так и грубым. Для многих очевидно, что должна существовать более глубокая, объединенная истина, которая перекрывает расщелину между ОТО и квантовой механикой и которая может быть применена ко всему. Мы имеем одну вселенную и, следовательно, многие полностью уверены, что мы должны иметь одну теорию.
Второе, хотя большинство вещей являются или большими и тяжелыми, или маленькими и легкими, и, следовательно, в практическом смысле могут быть описаны с использованием ОТО или квантовой механики, это не верно для всех
7. Отчасти неправильно говорить о "центре" черной дыры как если бы он был местом в пространстве. Причина, грубо говоря, в том, что когда нечто пересекает горизонт событий черной дыры – ее внешний край, – роли пространства и времени меняются местами. Фактически, точно так же, как вы не можете сопротивляться переходу от одной секунды к другой во времени, так вы не можете сопротивляться затягиванию в "центр" черной дыры, раз уж вы пересекли горизонт событий. Оказывается, что эта аналогия между направленностью вперед во времени и направленностью к центру черной дыры строго обоснована математическим описанием черных дыр. Таким образом, вместо того, чтобы думать о центре черной дыры как о положении в пространстве, лучше думать о нем как о положении во времени. Более того, поскольку вы не можете уйти от центра черной дыры, вы могли бы попытаться подумать о нем как о положении в пространстве-времени, где время приходит к концу. Это, может быть, и правильно. Но поскольку стандартные уравнения ОТО отказывают при таких экстремально малых размерах и гигантских плотностях массы, наша способность делать определенные утверждения такого сорта компроментируется. Ясно, это подразумевает, что если бы мы имели уравнения, которые не разваливались бы в глубине черной дыры, мы смогли бы получить важные результаты по поводу природы времени. Это одна из целей теории суперструн.
Это хороший пример, но если вы на самом деле скептик, вы можете еще поинтересоваться, является ли он чем-то, что должно заставлять кого угодно не спать ночью. Поскольку мы не можем заглянуть внутрь черной дыры, пока мы туда не прыгнем, и, более того, если мы туда прыгнем, мы не сможем сообщить о наших наблюдениях назад во внешний мир, наше неполное понимание внутренней области черной дыры может не произвести на вас впечатления, как не особенно беспокоящее. Для физиков, однако, существование области, в которой известные законы физики отказывают, – не важно, насколько эзотерической, скрытой эта область может казаться, – поднимает вверх красные флаги. Если известные законы физики разрушаются при некоторых обстоятельствах, это ясный сигнал, что мы не достигли глубочайшего возможного понимания. После всего сказанного, вселенная работает, поскольку мы можем сказать, что вселенная не разрушается. Корректная теория вселенной должна, уж по меньшей мере, удовлетворять такому же стандарту.
Итак, это, конечно, кажется обоснованным. Но без дополнительных усилий полная нетерпимость конфликта между ОТО и квантовой механикой обнаруживается только через другой пример. Посмотрим назад на Рис. 10.6. Как вы можете видеть, мы проделали великий прогресс в соединении в одно целое непротиворечивой и предсказательной истории космической эволюции, но картина осталась неполной из-за размытого пятна вблизи зарождения вселенной. А внутри мутного тумана тех ранних моментов лежит прорыв в самые соблазнительные тайны: причину и фундаментальную природу пространства и времени. Так что нам мешает проникнуть в туман? Упрек возлагается прямо на конфликт между ОТО и квантовой механикой. Антагонизм между законами большого и законами малого является причиной размытого пятна, остающегося неясным, и мы все еще не имеем взгляда на то, что происходило в самом начале вселенной.
Чтобы понять, почему, представьте, как в Главе 10, прокрутку пленки с расширяющимся космосом в обратном направлении, обратившись назад по направлению к Большому взрыву. При прокрутке в обратном направлении все, что сейчас уносится в стороны, будет сходиться вместе, и когда мы прокручиваем пленку еще дальше назад, вселенная становится все меньше, горячее и плотнее. Когда мы приблизимся к самому моменту времени нуль, вся наблюдаемая вселенная сожмется до размеров Солнца, затем спрессуется до размеров Земли, затем сдавится до размеров шара для боулинга, горошины, песчинки – вселенная сокращается до все меньшего и меньшего по мере того, как пленка перематывается по направлению к начальным кадрам. Тогда в этом обратном фильме наступит момент, когда вся известная вселенная будет иметь размер, близкий к планковской длине, – миллионной миллиардной миллиардной миллиардной сантиметра, – при которой ОТО и квантовая механика находятся в непримиримой оппозиции. В этот момент вся масса и энергия, соответствующая рождению наблюдаемой вселенной содержится в кусочке, который меньше чем в сто миллиардов миллиардов раз размера отдельного атома. [8]
8. Как и в предыдущих главах под "наблюдаемой вселенной" я подразумеваю часть вселенной, с которой мы могли бы, по меньшей мере, в принципе, иметь сообщение в течение времени с момента Большого взрыва. Во вселенной, которая бесконечна в пространственном протяжении, как обсуждалось в Главе 8, все пространство не сжимается в точку в момент Взрыва. Определенно, все в наблюдаемой части вселенной будет сжиматься во все меньшее пространство, когда мы направляемся назад к началу, но, хотя это тяжело нарисовать, имеются вещи – бесконечно далеко удаленные – которые всегда будут оставаться отделенными от нас, даже когда плотность материи и энергии возрастает все выше.