Брайан Грин. Ткань космоса: Пространство, время и структура реальности
Шрифт:
Итак, если мы живем на 3-бране, имеется альтернативное объяснение, почему мы не воспринимаем дополнительные измерения. Нет необходимости, чтобы дополнительные измерения были экстремально малыми. Они могут быть большими. Мы не можем видеть их вследствие способа, которым мы видим. Мы видим с использованием электромагнитных сил, которые не в состоянии достичь любого измерения вне трех, о которых мы знаем. Подобно муравью, гуляющему вдоль листа водяной лилии, полностью ничего не знающему о глубокой воде, лежащей прямо под видимой поверхностью, мы можем плавать в великом, обширном, многомерном пространстве, как на Рис. 13.3b, но электромагнитные силы – вечно удерживаемые внутри наших измерений – будут не в состоянии обнаружить это.
Хорошо,
Ну, почти все. Для сил гравитации ситуация отличается. Математический анализ сценария мира на бране показал, что гравитоны возникают из колебательных мод замкнутых струн, почти как они это делали в обсуждавшихся ранее безбранных сценариях. А замкнутые струны – струны без конечных точек – не захватываются бранами. Они свободны как покинуть брану, так и странствовать по ней или сквозь нее. Так что, если мы живем на бране, мы не отрезаны полностью от дополнительных измерений. Через гравитационное взаимодействие мы могли бы влиять и подвергаться влиянию дополнительных измерений. Гравитация в таком сценарии будет обеспечивать единственный способ для взаимодействия за пределами наших трех пространственных измерений. Как велики могут быть дополнительные измерения перед тем, как мы станем осведомлены о них через гравитационное взаимодействие? Это интересный и критический вопрос, так что попробуем рассмотреть его.
Гравитация и большие внешние измерения
В далеком 1687, когда Ньютон предложил свой универсальный закон гравитации, он, естественно, сделал строгое утверждение о количестве пространственных измерений. Ньютон не говорил просто, что сила притяжения между двумя объектами становится слабее, когда расстояние между ними становится больше. Он предложил формулу, закон обратного квадрата, которая точно описывает, как будет уменьшаться гравитационное притяжение, когда два объекта разделяются. В соответствии с этой формулой, если вы удваиваете дистанцию между двумя объектами, их гравитационное притяжение упадет в четыре раза (то есть в 22 раз); если вы утроите расстояние, оно упадет в девять раз (то есть в 32 раз); если вы увеличите расстояние в четыре раза, оно упадет в 16 раз (то есть в 42 раз); и в общем случае гравитационная сила падает пропорционально квадрату расстояния между объектами. Как стало достаточно очевидно за последние несколько сотен лет, эта формула работает.
Но почему сила зависит от квадрата расстояния? Почему сила не падает пропорционально кубу расстояния (так что, если бы вы удвоили дистанцию, сила бы уменьшилась на фактор 8) или четвертой степени (так что, если бы вы удвоили дистанцию, сила бы уменьшилась на фактор 16), или вообще, даже более просто, почему гравитационная сила между двумя объектами не падает прямо пропорционально расстоянию (так что, если бы вы удвоили дистанцию, сила бы уменьшилась на фактор 2)? Ответ прямо связан с числом измерений пространства.
Один из способов увидеть это таков: подумать о том, какое количество гравитонов эмитируется и поглощается двумя объектами в зависимости от расстояния, или подумать
Теперь мы можем объяснить оригинальный закон обратного квадрата Ньютона. Воображаемая сфера с центром в Солнце и проходящая через местоположение спутника, как на Рис. 13.4с, имеет площадь поверхности, которая – подобно площади поверхности любой сферы в трехмерном пространстве – пропорциональна квадрату ее радиуса, что в этом случае есть квадрат расстояния между Солнцем и спутником. Это значит, что плотность линий поля, проходящих через сферу, – полное число линий поля, деленное на площадь сферы, – уменьшается как квадрат расстояния между Солнцем и спутником.
(а) (b) (c)
Рис 13.4 (а) Гравитационная сила, оказываемая Солнцем на объект, такой как спутник, обратно пропорциональна квадрату расстояния между ними. Причина в том, что линии гравитационного поля Солнца распространяются одинаково во всех направлениях, как в (b), и потому имеют плотность на расстоянии d, которая обратно пропорциональна площади воображаемой сферы радиуса d, – схематично изображенной на (с), – площади, которая на основании геометрии оказывается пропорциональной d2.
Если вы удвоите расстояние, то же самое число линий поля теперь будет однородно распределено по сфере со в четыре раза большей площадью, а потому гравитационное притяжение на этом расстоянии будет меньше в четыре раза. Закон обратного квадрата Ньютона для гравитации является, таким образом, отражением геометрического свойства сферы в трехмерном пространстве.
В отличие от этого, если вселенная имела бы два или даже просто одно пространственное измерение, как бы изменилась формула Ньютона? Ну, на Рис 13.5а показана двумерная версия Солнца и его орбитального спутника. Как вы можете видеть, при любом данном расстоянии линии гравитационного поля Солнца однородно распределены по окружности, аналогу сферы с измерениями на одно меньше. Поскольку длина окружности пропорциональна ее радиусу (а не квадрату ее радиуса), если вы удвоите расстояние между солнцем и спутником, плотность линий поля уменьшится на фактор 2 (а не 4) , так что сила гравитационного притяжения спутника солнцем упадет только в 2 раза (а не в 4). Если вселенная имеет только два пространственных измерения, тогда гравитационное притяжение будет обратно пропорционально расстоянию, а не квадрату расстояния.
Если вселенная имеет только одно измерение, как на Рис. 13.5b, закон притяжения будет еще проще. Линии гравитационного поляне не имеют пространства, чтобы рассеиваться, так что сила гравитации не будет уменьшаться с расстоянием. Если вы удвоите расстояние между Солнцем и спутником (предполагая, что аналоги таких объектов могут существовать в такой вселенной), одно и то же число линий поля будет пересекать спутник, а потому сила гравитационного воздействия между ними не будет изменяться совсем.