Будущее быстрее, чем вы думаете. Как технологии меняют бизнес, промышленность и нашу жизнь
Шрифт:
Ситуацию можно описать и с других позиций. Более столетия в нашем обществе господствовало понятие владения личным автомобилем. Первая реальная угроза, с которой столкнулся этот аспект нашего жизненного уклада, а именно райдшеринг, совместные поездки в попутном направлении, вырисовалась не далее как в прошлом десятилетии. А господствовать ей не суждено и десяти лет. Ей уже наступают на пятки беспилотные автомобили, а тем, в свою очередь, грозят гибелью летающие автомобили, которым угрожают погибелью вакуумные поезда Hyperloop и международное ракетное сообщение. И не забывайте про аватары. А главное, все эти перемены произойдут в следующие десять лет.
Добро пожаловать в будущее, где скорости намного выше, чем вы думаете.
Глава 2. Прорыв к скорости света: экспоненциальные технологии
Самое холодное место во Вселенной [70]
70
Из беседы автора с Чедом Ригетти.
В далеком 1995 году астрономы из Чили [71] зафиксировали внутри туманности Бумеранг температуру –272°C. Это стало открытием, потому что в космосе обнаружился естественный полюс холода с самой низкой во всей Вселенной температурой. Но, между прочим, в белой трубе она почти на градус ниже – и значит, она не только отбирает у туманности Бумеранг звание самого холодного уголка Вселенной, но и дает пример суперзаморозки, необходимой, чтобы удерживать кубит в стабильной суперпозиции.
71
Public Information Office, Jet Propulsion Laboratory. Boomerang Nebula Boasts Coolest Spot in the Universe, June 20, 1997. Официальный пресс-релиз отдела внешней информации Лаборатории реактивного движения (NASA/JPL) см.: jpl.nasa.gov/news/releases/97/coldspot.html.
Что в чем?
В классической информатике под битом понимается крошечный кусочек двоичной информации: либо единица, либо ноль. А кубит [72] – усовершенствованная версия понятия «бит», квантовый бит. В отличие от битов, подчиняющихся сценарию или/или (ноль/единица), кубиты используют так называемую суперпозицию, которая позволяет им находиться одновременно в нескольких состояниях. Например, когда подбрасываешь монетку, она либо ляжет орлом, либо решкой. А если ее раскрутить на ребре? Пока она крутится, ее возможности лечь аверсом либо реверсом с калейдоскопической скоростью сменяются одна другой. Это и есть аналог суперпозиции. Правда, для ее достижения нужны сверхнизкие температуры.
72
Кубит – квантовый разряд, наименьший элемент для хранения информации в квантовом компьютере. Кубит всегда находится в двух состояних. То есть до момента «измерения» (декогеренции) мы не можем предсказать его значение (0 или 1), а в момент «измерения» он с заранее известной вероятностью «выберет» свое состояние. Прим. науч. ред.
Суперпозиция означает вычислительную мощность. Огромную вычислительную мощность. Классическому компьютеру для решения сложной задачи требуется проделать тысячи шагов, а квантовый компьютер решит эту же задачу всего за два или три шага. Чтобы было понятнее: IBM-овский суперкомпьютер Deep Blue [73] , который обыграл чемпиона мира по шахматам Гарри Каспарова, за секунду анализировал 200 млн возможных ходов. Вот какая огромная вычислительная супермощь заключена внутри той белой трубы.
73
Harding L., Barden L. Deep Blue Win a Giant Step for Computerkind // Guardian, May 12, 2011.
Принадлежит труба компании Rigetti Computing – ей шесть лет, и она угодила в пекло интереснейшей из разворачивающихся в технологической сфере эпических битв на сюжет «Давид против Голиафа». Сейчас главными соперниками в погоне за «квантовым превосходством» – иными словами, первенством в создании квантового компьютера, способного решать задачи, которые не по зубам классическим машинам, – выступают технологические гиганты Google, IBM и Microsoft, блестящие академические умы из Оксфорда и Йеля, правительства Китая и США. Да, и вышеупомянутая Rigetti.
Компания приступила к работе в 2013 г. В то время физик Чед Ригетти решил, что час квантовых компьютеров пробьет куда скорее, чем думают многие, и пожелал стать тем, кто доведет эту технологию до ума. И он оставил теплое место квантового физика в IBM, привлек инвестиционные средства более чем на 119 млн долл. и сконструировал трубу,
В двух следующих главах мы изучим девять экспоненциальных технологий, которые уже начинают конвергировать. Все они подчиняются закону Мура – продолжающейся уже 60 лет волне роста вычислительной мощности. Производительность транзисторных процессоров [74] – а ею измеряется величина этой волны – обычно вычисляют во флопсах (FLOPS), количестве операций с плавающей запятой в секунду [75] . В 1956 г. наши компьютеры были способны на десять тысяч флопсов в секунду. В 2015 г. производительность компьютеров достигла одного квадриллиона (1015) флопсов. Этот прогресс в триллион раз и стал важнейшей силой, двигавшей вперед технологию.
74
Бриньолфсон Э., Макафи Э. Вторая эра машин. Работа, прогресс и процветание в эпоху новейших технологий. М.: АСТ, 2017.
75
Числа с плавающей запятой – способ представления чисел в компьютере, когда на запись выделяется фиксированное число разрядов (мантисса), а затем в этой записи определяется место для запятой, которая отделяет целую часть от дробной (порядок). Так, числа 1234,5 и 1,2345 имеют одинаковую мантиссу, но разный порядок. Операции с плавающей запятой – это арифметические операции, которые выполняет процессор с такими числами. Прим. науч. ред.
Однако в последние несколько лет закон Мура замедлялся [76] . Все упирается в физику. Совершенствование интегральных схем шло по пути сокращения расстояния между соседними транзисторами, что позволяло чем дальше, тем больше натолкать их в микросхему. В 1971 г. расстояние между транзисторами составляло 10 тыс. нанометров. К 2000 г. оно сократилось где-то до сотни нанометров. Сегодня его удалось сократить до пяти, и вот тут-то начались трудности [77] . При таких микроскопических масштабах – а это уже молекулярный уровень – число задействованных в переносе тока электронов сокращается, и эти полупроводниковые элементы начинают ощущать влияние квантования проводимости, что разрушает их вычислительную способность. Это ставит жесткий физический предел увеличению числа транзисторов, и это лебединая песня закона Мура.
76
Eeckhout L. Is Moore’s Law Slowing Down? What Next? IEEE Micro. Vol. 37. No. 4. Pp. 4–5.
77
10 тыс. нанометров – это техпроцесс начала 1970-х гг. Техпроцесс – то, с какой точностью можно напечатать на плате то, что спроектировано. При описанной точности техпроцесса расстояние между процессорами, скорее всего, было больше. Например, в процессорах Intel уже в 2000-х гг. при 14-нанометровом процессоре расстояния между транзисторами составляли 70 нанометров. Прим. науч. ред.
А может, и нет.
«Закон Мура был не первой [78] , а только пятой по счету парадигмой, ускорявшей рост соотношения цена/производительность, – пишет в книге “Закон ускоряющейся отдачи” [79] Рэймонд Курцвейл. – Мощность вычислительных устройств (в единицу времени) постоянно умножалась, начиная с механических счетных устройств, применявшихся при переписи населения США 1890 года; потом была дешифровочная машина Robinson Алана Тьюринга, взломавшая секретные коды нацистской Enigma, затем – ламповая вычислительная машина CBS, предсказавшая избрание Эйзенхауэра в президенты США, далее – компьютеры на основе транзисторов, использовавшиеся для первых космических запусков, а потом дошло и до персональных компьютеров на интегральных микросхемах, на один из которых я сейчас надиктовываю этот свой очерк».
78
Kurzweil, Law of Accelerating Returns.
79
В сети есть неизданные переводы на русский язык. Прим. ред.