Чтение онлайн

на главную - закладки

Жанры

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Шрифт:

Может быть, не все это знают, но ученые к Нобелевской премии относятся очень серьезно. В конце XIX века химик Альфред Нобель – изобретатель динамита – учредил награды в области физики, химии, физиологии и медицины, литературы, а также премию мира, и все они вручаются каждый год, начиная с 1901 года. (Премию по экономике начали вручать только в 1968 году, и она находится в ведении другой организации [9] .) Нобель скончался в 1896 году, и его душеприказчики с удивлением обнаружили, что он пожертвовал 94 % своего немалого состояния на учреждение премии.

9

Эта организация – Центробанк Швеции.

С тех пор Нобелевские премии стали общепризнанной формой высшего

научного признания. Признание – не совсем то же самое, что научные «достижения», – Нобелевский комитет руководствуется в своих решениях вполне конкретными критериями, и споры о том, насколько премии соответствуют важности того или иного научного открытия, ведутся постоянно. Изначально Нобель завещал выдавать премию «тем, кто в течение истекшего года принес наибольшую пользу человечеству». В частности, премия по физике предназначалась «человеку, который сделал самое важное «открытие» или «изобретение» в области физики». Часть этих инструкций сейчас не исполняется. Несколько первых премий были выданы за работы, позже оказавшиеся ошибочными, и ныне никто больше не считает, что премию нужно обязательно давать за работу, выполненную в предыдущем году. Важно отметить, что сделать открытие – не то же самое, что быть признанным ведущим мировым ученым. Бывает, открытия совершаются почти случайными людьми, которые позже уходят из этой науки. А некоторые ученые делают фантастически важные работы в течение всей своей жизни, но им так и не удается сделать ни одного конкретного открытия, которое бы дотягивало до уровня Нобелевской премии.

Есть и другие критерии, сильно ограничивающие выбор Нобелевских номинантов. Премии не присуждаются посмертно, хотя, если лауреаты умирают между моментом принятия решения и объявлением этого решения, приз все-таки отдается им. Самое главное ограничение для физиков состоит в том, что премию не могут получить больше трех человек в течение одного года. В отличие, например, от премии мира премия по физике не дается организации или коллаборации – ее могут получить только отдельные ученые, и их не должно быть больше трех. В нынешнюю эпоху Большой Науки это ограничение иногда создает проблемы.

Когда дело доходит до теоретических работ, недостаточно быть умным или даже правым. Вы должны не только быть правым, но ваша теория еще должна подтвердиться в экспериментах. Наиболее важным вкладом Стивена Хокинга в науку является вывод о том, что черные дыры согласно правилам квантовой механики должны излучать потоки частиц. Подавляющее большинство физиков считают, что он прав, но на данный момент это чисто теоретический результат: мы пока не наблюдали никаких испаряющихся черных дыр, и у нас в перспективе нет никаких способов сделать это при современном уровне технологий. Вполне возможно, что Хокинг никогда не получит Нобелевскую премию, несмотря на его невероятно важные результаты.

Людям, не связанным с наукой, иногда может показаться, что весь смысл деятельности ученых в том и заключается, чтобы получить Нобелевскую премию. Это не так. Нобелевская премия отмечает важные вехи в науке, но сами ученые признают, что научный прогресс – это огромный гобелен, который слой за слоем ткут многие ученые на протяжении многих лет. Тем не менее нужно признать, что получение Нобелевской премии – это большое дело, и физики, конечно, внимательно следят за тем, какие открытия смогут когда-нибудь получить эту премию.

Никто не сомневался, что открытие бозона Хиггса является именно такого рода достижением, вполне достойным Нобелевской премии [10] . Несомненно было и то, что в первую очередь премии достойны авторы теории, предсказавшей бозон Хиггса. Конечно, в конце концов имеют значение не премии, а наука как таковая, но в связи с премией у нас появился хороший повод проследить за увлекательной историей идей, лежащих в основе поисков бозона Хиггса, а также за подготовкой к поискам и самими поисками. Цель этой главы – не пересказать историю в деталях и затем вынести суждение о том, кто заслуживает премии, а кто – нет. Как раз наоборот: глядя на то, как долго идеи механизма Хиггса формулировались, читатель поймет, что эта, как и любая другая значимая научная теория, прежде чем приобрести законченный вид, прошла много важных этапов. Попытка провести четкую границу между тремя (или меньшим количеством) учеными, которые заслуживают премии, и многими другими, которые ее не заслуживают, обязательно вносит искажения в реальную картину, хотя и снабжает СМИ сенсационными сюжетами.

10

В результате

Нобелевская премия по физике 2013 года была присуждена Питеру Хиггсу и Франсуа Энглеру за «теоретическое открытие механизма, который помогает нам понять происхождение масс субатомных частиц и который был недавно подтвержден благодаря открытию на Большом адронном коллайдере новой предсказанной частицы».

В этой главе мы попытаемся изложить правдивую историю, но, поскольку, как известно, дьявол прячется в деталях, такой краткий обзор обязательно будет неполным. По сей причине в этой главе будет несколько больше технических подробностей, чем в других главах книги. Вы вольны не читать их, хотя тогда вы рискуете упустить кусочек увлекательной физики и пару страниц потрясающей человеческой драмы.

Сверхпроводимость

В восьмой главе мы исследовали глубинную связь между симметрией и силами природы. Если у нас есть «локальная» или «калибровочная» симметрия, то есть та, которая работает независимо в каждой точке пространства, она обязательно сопровождается связывающим полем, а оно уже порождает силы. Было понятно, что так устроены гравитация и электромагнетизм, а в 1950-х годах Янг и Миллс придумали, как распространить эту идею на другие силы природы. Однако есть проблема, которую так упорно педалировал Вольфганг Паули: симметрии, порождающие определенные взаимодействия, всегда приводят к появлению безмассовых бозонов. В этом, в частности, проявляется власть симметрий: они диктуют строгие ограничения на свойства, которыми могут обладать частицы. Например, симметрия, лежащая в основе электромагнетизма, приводит к строгому сохранению электрического заряда при взаимодействиях.

Но действие сил, переносчиками которых являются безмассовые частицы, должно распространяться, как все считали в то время, на бесконечные расстояния, и их поэтому можно очень легко обнаружить. С гравитацией и электромагнетизмом все так и есть, а вот ядерные силы совершенно иные. Теперь мы поняли, что сильные и слабые взаимодействия – это тоже силы янгмиллсовского типа, просто соответствующие безмассовые частицы по разным причинам спрятаны от нас. В сильных взаимодействиях такие безмассовые частицы – глюоны, но они заперты внутри адронов, а в слабых взаимодействиях безмассовые W– и Z-бозоны становятся массивными из-за спонтанного нарушения симметрии.

Еще в 1949 году американский физик Джулиан Швингер выдвинул идею о том, что силы, порожденные симметрией, всегда будут переноситься безмассовыми частицами, но, продолжив заниматься этой проблемой, он в 1961 году понял, что его аргументы были небезупречны – в них была лазейка, которая позволяла калибровочным бозонам обзавестись массой. Он не был уверен, что это может на самом деле произойти, но написал статью и указал на свою предыдущую ошибку. Швингеру был свойственен элегантный и точный стиль, который проявлялся не только в манере держаться, но и в его научных работах. В этом смысле он был противоположностью Ричарду Фейнману, с которым он и Син-Итиро Томонага разделили Нобелевскую премию в 1965 году. Фейнман отличался некоторой экстравагантностью поведения и глубоко интуитивным подходом к физике, а Швингер был всегда педантичен и точен. Поэтому когда он написал статью, указав на слабое место в известной и принятой всеми теории, физическая общественность восприняла это очень серьезно.

Но один вопрос остался: что может заставить бозоны-переносчики взаимодействий обзавестись массой? Ответ пришел с несколько неожиданной стороны – не из физики элементарных частиц, а из физики конденсированных сред, занимающейся изучением материалов и их свойств. Идеи были позаимствованы по большей части из теории сверхпроводников – материалов, из которых, к слову, изготовлены гигантские магниты на БАКе.

Электрический ток представляет собой поток электронов через вещество. В обычном проводнике электроны натыкаются на атомы и другие электроны, что приводит к сопротивлению их потоку. А сверхпроводники – такие материалы, в которых, если температура достаточно низка, ток может протекать беспрепятственно. Первая обоснованная теория сверхпроводников была построена советскими физиками Виталием Гинзбургом и Львом Ландау в 1950 году. Они предположили, что сверхпроводник пронизывает особый вид поля, наделяющего массой обычно безмассовый фотон. Они, возможно, и не имели в виду новое фундаментальное поле, но сделали предположение о коллективном движении электронов, атомов и электромагнитных полей – вроде того, как звуковая волна – не колебание фундаментального поля, а коллективное движение атомов воздуха, сталкивающихся друг с другом.

Поделиться:
Популярные книги

Ересь Хоруса. Омнибус. Том 3

Коннелли Майкл
Ересь Хоруса
Фантастика:
фэнтези
5.00
рейтинг книги
Ересь Хоруса. Омнибус. Том 3

Город Богов

Парсиев Дмитрий
1. Профсоюз водителей грузовых драконов
Фантастика:
юмористическая фантастика
детективная фантастика
попаданцы
5.00
рейтинг книги
Город Богов

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Виктор Глухов агент Ада. Компиляция. Книги 1-15

Сухинин Владимир Александрович
Виктор Глухов агент Ада
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Виктор Глухов агент Ада. Компиляция. Книги 1-15

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Офицер

Земляной Андрей Борисович
1. Офицер
Фантастика:
боевая фантастика
7.21
рейтинг книги
Офицер

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Альда. Дилогия

Ищенко Геннадий Владимирович
Альда
Фантастика:
фэнтези
7.75
рейтинг книги
Альда. Дилогия

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем