Часы. От гномона до атомных часов
Шрифт:
Самым старым документом о механических часах, содержащим описание и чертеж и опубликованном в 11 различных рукописях (из них по крайней мере одна исходит непосредственно от автора часов), является, по всей видимости, сообщение об «астрарии» — астрономических часах, которые после 16 лет труда над ними закончил в 1364 г. профессор астрономии и медицины Джиованни де Донди для Палаццо дель Капитане в Падуе.
Сохранились, конечно, и сообщения о других часах более ранней эры, но они не вполне обоснованны. По одному из таких сообщений, Генри де Вик из Поррэна изготовил примерно около 1370 г. башенные часы с боем для королевского дворца Карла V. По Другим данным, первые башенные часы с боем изготовил Висконти в 1335 г. для башни костела Беата Вирджинни (ныне Сен-Готард) в Милане.
В наши страны механические часы попали несколько
Механические часы развивались в течение сравнительно долгого времени, не менее чем в течение пяти веков, а поэтому, по крайней мере когда речь идет об истории, рассмотрим только важнейшие ступени развития этих часов. Сначала познакомимся с их главными элементами, с их функциями и с некоторыми данными о часовых механизмах и о часовщиках, имена помогут интересующимся определять происхождение и возраст тех или иных часов.
Как уже было сказано, с изобретением механических часов началась новая эра хронометрии. Время начали измерять по новому принципу, который сохранил свое значение в течение ряда столетий. Из него вышли затем системы всех позднейших типов часов, независимо от того, использована ли для привода часов энергия механическая, электрическая или даже ядерная [7] .
7
Автор, по-видимому, имеет в виду атомные часы или электрочасы с радиоизотопными источниками энергии, но ни в тех, ни в других «ядерная» энергия (энергия ядерного распада) не используется. (Прим. науч. ред.)
Функциональные элементы механических часов
Любой часовой механизм можно разделить на четыре основные функциональные группы, а именно: приводной и передаточный механизм, спусковой механизм, осциллятор и индикаторная часть. Источник энергии привода у механических часов обычно бывает встроен в сам механизм часов и является его составной частью, например барабаны с гирями или же пружинный механизм с пружиной.
Требуемое количество энергии отмеривается в механических часах специальным устройством, так называемым спусковым механизмом или спуском, являющимся соединительным элементом между механизмом часов и осциллятором. Этот механизм постоянно соединен с передаточным механизмом часов, от которого он получает энергию привода. С осциллятором, который в современных часах имеет форму маятника или баланса, спуск взаимодействует лишь в определенные моменты, выполняя свою основную задачу, весьма важную для обеспечения хода часов, — разделение постоянной энергии привода на отдельные силовые импульсы, поддерживающие колебания осциллятора. Другой задачей спускового механизма является суммирование колебаний осциллятора. Если предположить, что осциллятор колеблется с постоянной частотой, то спуск работает одновременно в качестве устройства, суммирующего постоянные интервалы времени — полупериоды этих колебаний. Постоянство частоты осциллятора является главной предпосылкой точности хода часов. Если эта частота постоянна, то колебания осциллятора изохронны [8] .
8
Это не совсем точно: изохронными называются колебания, частота которых не зависит от амплитуды. (Прим. науч. ред.)
В дальнейшем изложении вопроса о спусковых механизмах мы часто будем употреблять понятия «полуколебание» и «колебание». Под «полуколебанием» осциллятора мы будем здесь понимать его движение в течение полупериода колебаний из одного положения равновесия в другое, а под «колебанием» —
Осциллятор выполняет прежде всего роль генератора изохронных колебаний, но он регулирует и последовательность во времени силовых импульсов спуска, а этим, в свою очередь, регулируется ход всего часового механизма вместе с его индикаторным механизмом [9] .
В течение столетий индикаторным механизмом был стрелочный индикатор с циферблатом, который имел классический вид неподвижного циферблата с одной, двумя или несколькими вращающимися стрелками, или же с неподвижной стрелкой и с одним или несколькими вращающимися цилиндрическими шаровидными или плоскими циферблатами.
9
Роль генератора колебаний в часах выполняют в своей совокупности осциллятор и спуск, взаимодействующие при своей работе как автоколебательная система. (Прим науч. ред.)
В последнее время снова стала преобладать цифровая индикация, ставшая известной уже в конце XIX и начале XX в. и способствовавшая тогда усилению сбыта коммерческих часовых приборов.
Спусковой механизм и осциллятор образуют регулятор, который определяет точность хода механических часов. Исследуя механизм старых часов, мы встречаемся с огромным количеством конструктивных вариантов, с сотнями успешных и менее удачных спусковых механизмов и с различными формами осцилляторов — от простых маховиков через остроумно решенные сложные маятники и до современных самокомпенсирующихся балансов.
На первый взгляд представляется, что конструкция спускового механизма зависела от индивидуальных представлений и что между отдельными типами спусков нет общих признаков, по которым их можно было бы подразделить на группы. Однако общие признаки существуют, и по ним можно оценивать принцип и функцию спусковых механизмов с нескольких точек зрения. В целях наглядности мы будем рассматривать только те спусковые механизмы, которые чаще всего использовались в старых механизмах часов и имели наиболее важное значение для развития таких часов.
Объясним работу спускового механизма часов на примере наиболее известного и оправдавшего себя анкерного спуска (рис. 8).
Рис. 8. Спусковой механизм современных механических часов
Главными частями такого спуска является анкер 2 с рабочими изогнутыми штифтами, так называемыми палетами 1, и зубчатое спусковое колесо. Палеты анкера охватывают определенное количество зубьев спускового колеса и поочередно заходят в эти зубья. В положении, показанном на рис. 8, зуб спускового колеса подошел к левой палете и опирается на боковую поверхность, так называемую поверхность покоя. Маятник соединен вилкой с анкером, и здесь он находится в амплитудном положении и начинает опускаться в положение равновесия. Если при этом движении анкер повернется на определенный угол обхвата , то зуб спускового колеса упрется в наклонную, так называемую импульсную, плоскость палеты, и при дальнейшем движении по этой плоскости он поднимет левое плечо анкера и при этом придаст анкеру и маятнику силовой импульс.
Длина этого импульса выражена углом импульса . После окончания импульса палета 1 освободит зуб спускового колеса, спусковое колесо скачкообразно повернется, пока соответствующий зуб спускового колеса 2 не натолкнется на поверхность покоя второй палеты 3. Затем маятник легко перейдет на свою точку левого поворота и снова возвратится, пока зуб 2 перейдет с поверхности покоя на наклонную плоскость импульса правой палеты, а анкер получит импульс в обратном направлении. Этот процесс циклически повторяется. Анкерный механизм работает с двусторонним импульсом. Спусковое колесо при каждом полуобороте поворачивается на половину шага зубьев. Короткий скачок спускового колеса, сопровождаемый известным характерным тиканьем часов, правда, связан с некоторой потерей энергии, но он необходим для придания импульса анкеру и осциллятору.