Человек редактированный, или Биомедицина будущего
Шрифт:
Чаще случаются мутации нейтральные, которые не вызывают никаких последствий. Опять-таки — сегодня. Допустим, одна буква генетического текста изменилась, но если это не повлияло на изменение аминокислотного состава или на функцию данного гена, то наличие или отсутствие этой мутации в данных конкретных условиях никак не проявляется.
Конечно, если она будет передаваться дальше по наследству, а потом случайным образом в этом же гене возникнет другая мутация, то сочетание двух случайных мутаций может оказаться вредным, а может — и очень выигрышным. Это некая рулетка: мы не способны предсказать заранее, где произойдет изменение и что оно затронет.
Меня часто спрашивают, бывают ли полезные мутации. На этот вопрос можно ответить так: полезны ли какие-то
Если же говорить не о человеке, а о растениях или животных, то полезность определяем мы, люди. Для растения мутация может быть и вредной. Например, существование культурных сортов растений — это, скорее всего, вредная мутация с точки зрения выживания растений. Если за ними перестать ухаживать, они с большой вероятностью выродятся, то есть вернутся к дикому типу, или погибнут. Но с точки зрения человечества это полезная мутация, а в природе нет ничего вредного или полезного. Мутация для нее — это исключительно важное биологическое событие. Для нее самой, для развития жизни чем больше разнообразия, изменений, тем лучше, потому что таким образом создается больше возможностей для последующего выживания данной особи, вида или для образования нового вида. Вот простой пример: вымерли мамонты — то ли потому, что сильно похолодало, то ли их уничтожила какая-то инфекция, но в любом случае у них не оказалось нужных для выживания в новых условиях наследуемых фрагментов ДНК. Но ведь от этого жизнь на Земле не исчезла! Именно мутационное разнообразие дает живым организмам возможность существовать. Кому-то не повезло, а у кого-то произошло наследуемое изменение, и его потомки живут дальше. Вот почему так важно, чтобы изменения были наследуемыми.
И напротив, чем консервативнее какой-то биологический вид или условия, в которых он живет, тем хуже (вы сами знаете про последствия близкородственных браков). Результатом консерватизма является вырождение, деградация.
Поэтому мутации — это хорошо. И сама жизнь — в разнообразии.
Рождение генной инженерии
Революционный переворот в биологии
Сегодня трудно поверить, что могучая современная наука, связанная с изучением молекулы ДНК как физического объекта и как носителя наследственной информации, возникла лишь в середине прошлого столетия — по историческим меркам совсем недавно.
Все наиболее значительные достижения науки о ДНК, все главные открытия и эксперименты в этой области были совершены в середине и во второй половине XX века. Поистине революционный переворот в биологии случился благодаря развитию техники и использованию рентгеновского излучения — человек сумел заглянуть не только внутрь любого неживого объекта, но и глубоко внутрь живой клетки и добраться до каждой химической молекулы, из которых построена как неживая, так и живая материя.
Особенно важную роль сыграл и продолжает играть метод рентгеноструктурного анализа, с помощью которого была открыта сложная структура молекулы ДНК. Благодаря этому методу и по сей день происходит изучение пространственного строения белковых молекул. Рентгеноструктурным анализом определяется, как правильно должны выглядеть два функционально взаимодействующих белка, то есть «ключ» и «замочная скважина».
Таким образом, физические подходы и новые методы исследования оказались совершенно необходимыми и продолжают
Однако наряду с физическими развивались и биологические подходы. В значительной степени благодаря им человечество сумело не только исследовать, но и использовать такие биологические объекты, как вирусы.
О вирусах люди узнали еще в конце XIX века. В XX веке их научились выращивать в лабораториях с применением клеточных культур и даже создавать вакцины от некоторых вирусных заболеваний, еще не предполагая, какую генетическую информацию несет вирусная частица, полная структура которой была определена лишь в 1955 году. Сегодня известно, что это некая информационная молекула на основе ДНК или РНК, запакованная в белковую оболочку и способная проникать в живую клетку.
Например, коронавирус, с которым сегодня столкнулось человечество, как раз и представляет собой молекулу РНК в белковой оболочке. Мы уже знаем, что РНК — это одноцепочечная рибонуклеиновая кислота (см. главу 1: «Транскрипция, трансляция, белок»). Содержащая ее вирусная частица, в данном случае коронавирус, размножается в цитоплазме клеток человека, используя их как фабрику для производства белковой оболочки и копирования РНК, поэтому генетическая информация коронавируса не оставляет следа в геноме клетки. А вот, скажем, вирус герпеса — это уже молекула ДНК в белковой оболочке, и в этом случае вирусная ДНК может встроиться в геном инфицированной клетки и даже остаться там надолго, до поры до времени никак себя не проявляя.
Для нас особый интерес представляют вирусы бактерий. Их назвали бактериофагами, или пожирателями бактерий [4] («фаг» в переводе с греческого означает «пожиратель»), Первоначально это название, не сулящее бактериям ничего хорошего, было дано загадочным сущностям, которых не удавалось рассмотреть даже в микроскоп. Бактериофаги были обнаружены в начале XX века, когда микробиологи заметили, что колонии бактерий на экспериментальных чашках Петри в какой-то момент исчезли. Полностью! Ученые предположили, что всему виной какое-то заболевание, возбудитель которого слишком мал, чтобы его можно было увидеть. Но вскоре на смену обычным оптическим микроскопам пришли электронные, с помощью которых ученые разглядели причину гибели бактерий — заражение ранее неизвестными вирусами.
4
Подробнее о бактериофагах можно прочитать в книге Мухаммада Хамида Замана «Биография сопротивления. Эпическая битва между людьми и патогенами» (изд-во «Портал», 2021 г.) — Прим. ред.
Генетическая рекомбинация, или Поделись своим геномом
Бактериофаги, как и другие вирусы, имеют белковую капсулу, внутри которой содержится молекула ДНК или, реже, РНК. У них нет собственного обмена веществ, поэтому вне живой клетки они размножаться не могут.
Фаг проникает в бактерию, а дальше происходит нечто поразительное: его ДНК встраивается в геном бактерии. Для чего? Для того, чтобы генетический материал фага мог передаваться в ряду клеточных делений бактериальной клетки, пока не придет время его активации, которое определяется внешними факторами. В случае активации (это может произойти сразу после попадания вируса в клетку бактерии) генетическая информация с ДНК фага считывается бактериальными ферментами, то есть происходит транскрипция его собственной ДНК и синтезируются белки для сборки капсида (оболочки) вируса.