Чем мир держится?
Шрифт:
По сути, да и замыслу, это проверка еще не провозглашенного принципа эквивалентности.
Великолепно поставленный эксперимент! А что точность его равнялась примерно одной тысячной — так ведь опыт был поставлен в XVII веке!
Блестящего результата добился в конце XIX века барон Лоранд Этвеш, чье имя носит теперь Будапештский университет. Он проверил эквивалентность тяжелой и инертной масс с точностью до пяти миллиардных долей, Причем он сравнивал поведение в гравитационном поле таких разных вещей, как платина и дерево, медь и сало, вода и асбест… Шестьдесят с лишним лет эта точность оставалась непревзойденной, пока в Принстоне профессор Р. Дике не поставил в 1961–1964
Надо, пожалуй, добавить, что эксперименты по уточнению принципа эквивалентности масс показали еще, что ему подчиняются в высокой степени и массы разных элементарных частиц. Золото состоит из нейтронов на шестьдесят процентов, алюминий же только на пятьдесят. Раз это обстоятельство не сказалось на результатах опыта Дике, значит, нейтроны и протоны обладают одним и тем же ускорением свободного падения с точностью до десяти в минус десятой степени (одной десятимиллиардной доли), а электроны — тем же ускорением, что и эти тяжелые ядерные частицы, с точностью до десяти в минус седьмой степени (одной десятимиллионной).
Новый рекорд, однако, в отличие от предыдущего, продержался недолго. В. Б. Брагинский и В. И. Панов в Московском государственном университете вскоре после опытов Дике сумели поднять точность еще в тридцать раз.
Сотрудники МГУ сохранили схему опыта, заменив золото платиной и укрепив на концах коромысла восемь грузов: четыре из алюминия, четыре из платины. Давление в вакуумной камере сделали еще меньшим, чем в опыте Дике, обеспечили тепловую и магнитную изоляцию установки…
Колебания крутильного маятника должны были записываться на фотопленке, на которую падал отразившийся от установленного на коромысле зеркальца луч лазера.
Сам Дике был поражен столь быстрым улучшением его результатов. А покойный академик АН УССР А. 3. Петров так оценил опыт в МГУ: «Добиться такой точности — это, знаете, удивительно. Вдвойне приятно, когда этого добиваются твои соотечественники. И, кроме того, что самое главное, сразу же напрашивается вывод: если удалось достичь повышения точности в этой области, то, значит, реально ожидать в ближайшее время и повышения точности в других, соседних экспериментах по поиску гравитационных волн!»
Американские физики Уитерборн и Фоэйрбэнк непосредственно измерили ускорение свободного падения электронов и нашли, что оно отличается от ускорения земного тяготения не более чем на десять процентов. Харвей, Дабе и другие провели аналогичные опыты с нейтронами. Здесь различие не могло превышать и одного процента.
Проценты — после миллиардных и триллионных долей? Но ведь одно дело эксперименты с обычными телами, а другое — непосредственно с элементарными частицами, особенно заряженными, чувствительными к случайным электромагнитным полям.
Измерили степень эквивалентности тяжелой и инертных масс для Земли и Луны с точностью
Ученые перестают проверять физические законы и принципы лишь после того, как опровергнут их. Но пока третий принцип общей теории относительности остается прочно обоснованным фактами.
Великие идеи нужно сразу же разрабатывать, не дожидаясь их добросовестной проверки по явлениям природы.
В сборнике «Физики продолжают шутить» была опубликована юмореска примерно такого содержания: экспериментаторы обнаружили, что скорость света в пустоте постоянна, теоретики принялись глубокомысленно рассуждать, отчего бы она была именно такова? Эйнштейн сказал: так и должно быть, после чего теоретики— одни раньше, другие позже — воскликнули: какая гениальная мысль!
Шутка обыгрывает реальное событие: Эйнштейн объявил факт принципом [10] . И уж наверняка то же самое он сделал и в случае с эквивалентностью инертной и тяжелой масс: обратил факт, который мог рассматриваться как чисто случайное совпадение, в фундаментальный принцип устройства Вселенной.
10
Стоит оговориться, что Эйнштейн, возможно, не знал об эксперименте, в котором было доказано постоянство скорости света в пустоте, и пришел к этому своему принципу, исходя из общих теоретических рассуждений.
«Уравнение в правах» поля тяготения и неинерциальной (то есть движущейся не равномерно, а ускоренно) системы отсчета позволило сформулировать те условия, при которых законы физики справедливы для любых систем отсчета. Это положение и называют общим принципом относительности.
Так наука, начав свой путь здесь с утверждения, что законы меняются при переходе от инерциальных систем к неинерциальным, нашла способ решить это реальное противоречие природы и парадоксальным образом пришла к прямо как будто противоположному суждению. Не будем забывать только, что теперь при таком переходе уравнения, выражающие эти законы, по определенным правилам преобразуются.
Опять перед нами тот же «парадокс парадоксов» Бора: если истина действительно глубока, то справедлива и истина ей противоположная. Но как же все это построение может кому-то (пусть даже только самим физикам!) казаться проще старой ньютоновской теории?
Эйнштейн и Инфельд отвечают на этот вопрос так: «Чем проще и фундаментальнее становятся наши допущения, тем сложнее математическое оружие нашего рассуждения; путь от теории к наблюдению становится длиннее, тоньше и сложнее. Хотя это и звучит парадоксально, но мы можем сказать: современная физика проще, чем старая физика, и поэтому она кажется более трудной и запутанной».
Получается, условно говоря, так: физическая часть теории настолько проста, что математическая должна быть очень сложной. На самом деле, конечно, отделить одно от другого тут невозможно, и все-таки сам Эйнштейн дает, как видите, право на такое противопоставление.
Снова перед нами математика выступает в роли естественного языка природы; речь человека, плохо овладевшего чужим языком, поневоле проста; чем лучше знаешь язык, тем больше слов и их форм употребляешь. Но следует ли из этого, что ты отказался от первоначальной простоты ради сложности? Сложность здесь естественна, физическая простота прикрыта этой математической сложностью.
Запечатанный во тьме. Том 1. Тысячи лет кача
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
рейтинг книги
Старая дева
2. Ваш выход, маэстро!
Фантастика:
фэнтези
рейтинг книги
Наследник 2
2. Старицкий
Фантастика:
попаданцы
альтернативная история
фэнтези
рейтинг книги
Лейб-хирург
2. Зауряд-врач
Фантастика:
альтернативная история
рейтинг книги
Крещение огнем
5. Ведьмак
Фантастика:
фэнтези
рейтинг книги
Мастер Разума III
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
рейтинг книги
Охотник за головами
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
рейтинг книги
Адвокат вольного города 7
7. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
фантастика: прочее
рейтинг книги
Прометей: каменный век II
2. Прометей
Фантастика:
альтернативная история
рейтинг книги
Пустоцвет
Любовные романы:
современные любовные романы
рейтинг книги
Я еще не князь. Книга XIV
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Город драконов
1. Город драконов
Фантастика:
фэнтези
рейтинг книги
Взлет и падение третьего рейха (Том 1)
Научно-образовательная:
история
рейтинг книги
