Такие структуры Пригожин назвал диссипативными, имея в виду роль, которую играют в их возникновении процессы рассеяния энергии, диссипации. В своей теории Пригожин описал модель диссипативных
структур с помощью нелинейных функций времени, характеризующих способность систем обмениваться веществом и энергией с внешней средой и самопроизвольно восстанавливать свою устойчивость. При этом время оказалось связанным со степенью сложности системы.
Подтверждением теории Пригожина на уровне неживой материи стали так называемые «химические часы» – колебательные химические реакции. В этих реакциях жидкость меняет свой свет через равные промежутки времени без внешнего воздействия. Согласно классической теории, взаимные превращения двух веществ должны приводить к усредненному цвету раствора. Однако реально через определенный промежуток времени в растворе генерируется своеобразный сигнал, по которому все молекулы реагируют одновременно.
Возвращаясь к термодинамическому описанию систем, И. Пригожин говорит: «Длительное время
термодинамика интересовалась главным образом изолированными системами, находящимися в состоянии равновесия. Сегодня ее интерес сместился в сторону неравновесных систем, взаимодействующих со средой и обменивающихся с ней потоками энтропии. Это взаимодействие означает, что мы имеем дело с „погруженными“ системами. Тем самым предмет рассмотрения сразу сближается с объектами вроде городов или живых систем, которые могут существовать только благодаря погруженности в соответствующую среду» [14]. Сложность не рассматривается более как исключительная черта биологии или наук о человеке в обществе, замечает Пригожин, она проникает и в физические науки, оказываясь феноменом, имеющим глубокие корни в законах природы. Важнейшим следствием этой ситуации является возможность переноса нового теоретического инструментария, разрабатываемого в математической физике, в биологию и социально-гуманитарные науки. Тем самым размывается традиционное различение «точных» (hard) и «качественных» (soft) наук.