Чтение онлайн

на главную - закладки

Жанры

Число и культура
Шрифт:

Потрясение оказалось настолько глубоким, что побудило пифагорейцев вообще отказаться от чисто арифметического способа рассуждений, впредь ограничиваясь наглядной геометрией и даже алгебраические по характеру задачи решая геометрическим способом (так называемая геометрическая алгебра).(12) Остальные математики также постарались подальше отойти от места крушения колосса и в дальнейшем огибать опасную зону на почтительном расстоянии. Любопытный и по-своему знаменательный исторический факт: на протяжении двух тысячелетий математики знали о доказательстве Гиппазия, но предпочитали о нем поменьше упоминать, спасаясь солидарным полуумолчанием от "парадокса".

Помимо 2, было найдено немало других чисел с аналогичными свойствами – 3, 5

и т.д.,(13) – доказательства строились по уже известному алгоритму. Лишь в Возрождение – в обстановке крушения авторитетов, традиций, в эпоху великих открытий, в контексте принципиально новых математических задач (собственно алгебраических) и методов их решения – был не только чрезвычайно расширен класс таких чисел, но и с ними научились подобающим образом обходиться. Впрочем, название, ставшее термином, сохранило печать былых драм: числа иррациональные, явный оксюморон (как может число противоречить разуму?).

Как бы там ни было, человек узнал о существовании двух классов чисел: рациональных и иррациональных. В их отношении между собой выступает операция сравнения, но уже не по величине, как раньше (больше-меньше), а по признаку соизмеримости, т.е. наличия или отсутствия общей меры. Всякий раз таким образом сопоставляется пара чисел, пара классов, т.е. данное отношение – бинарно, n = 2. На этом история не закончилась.

Развитие математики и механики выявило особую роль такого часто встречающегося числа как , затем открыли другое замечательное число, получившее обозначение e (одна из важнейших постоянных математического анализа).(14) В конце ХVIII в. И.Ламберт и А.Лежандр доказали, что число не может быть рациональным, а во второй половине ХIХ в. выяснилось, что и e не только иррациональные, но и трансцендентные. Существование класса трансцендентных чисел как таковых впервые установил французский математик Ж.Лиувилль в 1844 г., теорему о трансцендентности числа доказал Ф.Линдеман в 1882 г., аналогичную теорему о числе e – Ш.Эрмит в 1873 г.

Вообще в данный период – в канун и вместе с европейскими революциями 1848 г. – в математике происходит много ярких событий, так или иначе имеющих отношение к теме книги, что, возможно, не удивительно: начиналась подлинная революция в математике, предварившая великие потрясения и открытия конца ХIХ – начала ХХ вв. в физике, философии, искусстве, политике и др. Но об этом речь впереди, а в настоящем контексте упомянем немецкого ученого Р.Дедекинда, обосновавшего теорию действительных чисел и предложившего строгий аксиоматический метод введения чисел иррациональных (так называемые дедекиндовы сечения). Однако сейчас нас интересуют числа трансцендентные.

Что они собой представляют? По определению – это те, которые не могут быть корнем никакого многочлена с целыми коэффициентами, т.е. числа неалгебраические, что навряд ли много скажет нематематику. Противопоставление классов алгебраических и неалгебраических (трансцендентных) чисел, тем не менее, исключительно важно, поскольку с алгеброй принято связывать саму нашу логику. Впоследствии такие логики и были формализованы в алгебраическом виде (математическая логика). В таком случае, быть числом неалгебраическим как бы означает "быть нелогичным", что, собственно, и запечатлелось в названии: трансцендентные (снова, и еще более сильный, оксюморон: казалось бы, что "потустороннего" может быть в длине окружности? Но математики знают, о чем говорят).

Пропасть между алгебраическими и трансцендентными числами подчеркивается теорией множеств, ставшей еще одним достижением ХIХ в., особенно второй половины – Б.Больцано, Г.Кантор, Р.Дедекинд. Хотя алгебраических чисел – рациональных и иррациональных – существует бесконечное количество, но их множество,

как выражаются, счетно. Это означает, что все такие числа – не на практике, конечно, а в принципе – можно пронумеровать, т.е. их "столько же", сколько чисел в натуральном ряду. Чисел же трансцендентных неизмеримо, качественно "больше". Их множество несчетно и, как говорят в таких случаях, имеет мощность континуума (т.е. трансцендентных чисел "столько же", сколько точек на непрерывной прямой). Возможность что-то пронумеровать – верный признак логичности, о чем же тогда свидетельствует отсутствие подобной возможности?

В прежней среде действительных чисел, но по-новому, была по сути развернута интеллектуальная драма, сходная с той, что некогда произошла при первой исторической встрече с иррациональными числами. К счастью, во второй раз математики оказались более подготовленными в морально-психологическом плане. Посмотрим, что у нас осталось в итоге.

Числа действительные (иначе их называют вещественными) делятся, во-первых, на рациональные и иррациональные, во-вторых, – на алгебраические и трансцендентные. В обоих случаях речь идет о характерной оппозиции: за числами одного сорта признается качество своеобразной "логичности", за числами другого сорта – нет. Сравнение в обоих контрастных противопоставлениях производится попарно, т.е. кратность отношений двойная, n = 2. Если свести вместе обе классификации, построенные над полем действительных чисел, то получится, что последнее состоит из чисел рациональных (целых и дробных), алгебраических иррациональных (наподобие 2) и трансцендентных. Их разделение фиксирует скачкообразное убывание специфической "логичности" (мы уже знаем, в каком смысле). Изобразим классификацию на рисунке:

Рис. 1-3

Почему в итоге получилось три непересекающихся класса действительных чисел, т.е. почему М = 3? – Во-первых, в системе задано бинарное отношение сравнения ( n = 2 ); во-вторых, совокупность названных классов мыслится в качестве законченной и целостной. Откуда нам известно последнее? – От самих математиков, ибо они доказали так называемую теорему о полноте, утверждающую, что других классов действительных чисел не существует, сюрпризы с появлением новых не повторятся.

Наверное, стоит извиниться перед читателем за столь длинный и сложный пример, но все же он, надеюсь, короче, чем сама эта история длиной в 2,5 тысячи лет. Данным пассажем можно было бы и пренебречь, но беда в том, что впоследствии (в главе 3) нам еще придется встретиться с иррациональными числами и оттого неплохо бы знать, что за ними стоит. Пока же, коль все равно затрачены время и силы, грех не воспользоваться этим и не сформулировать некоторые полезные выводы, которые пригодятся для понимания и других паттернов.

Во-первых, мы имели случай лишний раз убедиться, что предлагаемая модель – элементарно-математическая по форме, культурологическая по функции – способна работать "поверх" (или "из-под низа") достаточно сложного концептуального материала. Простейшие числа – два и три – справляются с описанием итога длительной работы перворазрядных ученых, причем в данном примере – как раз в области чисел.

Во-вторых, хотелось дать получше почувствовать одну из особенностей нашей модели: она дескриптивна, мы не затронули и тысячной доли содержательного богатства идей упомянутых ученых (как ранее не пытались всерьез выяснить, что представляют собой, скажем, тело-душа-дух или небо-земля-преисподняя). В специальные работы мы практически не вникали, интересуясь лишь "сухим остатком" (для нас это количество элементов). Тем не менее наши выводы совпали с положениями самой математической науки.

Поделиться:
Популярные книги

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Плохая невеста

Шторм Елена
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Плохая невеста

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Убивать чтобы жить 8

Бор Жорж
8. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 8

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Николай I Освободитель. Книга 5

Савинков Андрей Николаевич
5. Николай I
Фантастика:
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 5

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол