Число и культура
Шрифт:
В качестве элементов (в принятой терминологии) могут быть выбраны вершины треугольника, в качестве отношений между элементами – его стороны. Каждая из сторон соединяет пару вершин, будучи, таким образом, бинарным отношением ( n = 2 ). Каждая из вершин треугольника соединена соответствующими сторонами с каждой, т.е. система связна. Количества вершин и сторон совпадают: М = k, ср. уравнение (1) из раздела 1.2, – каждое из них равно трем.
С ничуть не меньшим основанием можно назначить элементами стороны треугольника; в таком случае роль отношений сыграли бы пересечения сторон, т.е. вершины. Каждое из пересечений, очевидно, бинарно, по-прежнему n = 2. Система в этом плане логически симметрична, инверсивна.
Подобное разложение
Если тройственные структуры ассоциируются с двумерными симплексами, то рассматриваемые в настоящем разделе четверичные – с симплексами трехмерными. Тетраэдр – также замкнутый геометрический объект, в котором каждая тройка его вершин соединена соответствующей гранью, т.е. в системе конституированы тринитарные отношения, n = 3. Аналогично предшествующему примеру, в качестве элементов могут быть выбраны вершины, отношений – грани пирамиды, но с равным успехом и наоборот, поскольку любая из вершин представляет собой пересечение трех и именно трех граней. Система по-прежнему логически инверсивна. Числа вершин и граней в тетраэдре совпадают ( М = k ), каждое из них равно четырем.
Помимо двумерных и трехмерных, топология оперирует симплексами произвольной размерности, n – мерными, где n может быть как больше, так и меньше двух или трех. В n – мерном эвклидовом пространстве симплексом называется замкнутая фигура n измерений, обобщающая понятия треугольника и тетраэдра. Пока мы, впрочем, сосредоточили внимание на тройственных и кватерниорных системах, хотя в нашем распоряжении есть и общее решение для различных n, М – выражения (9), (10), – которым отвечают симплексы произвольных размерностей.
В ХХ в. возник такой эффективный раздел математики как комбинаторная топология (см., напр., [258] или [14]). Геометрические объекты произвольной формы разбиваются на простейшие составляющие, симплексы. И наоборот: из последних, как из деталей конструктора, могут быть собраны фигуры произвольной конфигурации. Т.е. не только системы S, симплексы обладают элементарно-комбинаторной природой, но и используя такие системы как готовые блоки, "кирпичи", из них можно строить всевозможные сочетания. Так называемый симплекс-метод применяется, в частности, в экономике.
С середины ХIХ и особенно в ХХ в. наука, культура проявляют все б'oльшую склонность к интеллектуальным операциям подобного сорта, воспроизводя тем самым древний алфавитный принцип: слова состоят из слогов, из букв, комбинируя слова, можно составлять фразы, абзацы, текст в целом. (О коррелятивности алфавитного и числового принципов упоминалось в разделе 1.1.) Многообразие химических веществ изображается в форме соединений химических элементов (записываются формулы, для реакций составляются уравнения). С начала ХХ в. сами эти элементы, атомы представляются в виде сочетаний элементарных частиц (теперь утверждают, что и последние могут быть разложены на кварки). Не отставала и биология – учения, разгадывающие генетический код, открыто говорят о четырехбуквенном алфавите А – Г – Т – Ц (если угодно, еще один образец кватернионов ХХ в.). Сходные "блочные" тенденции присущи и технике, логике, культурологии (структурализм) и даже искусству (например, пуантилизм по отношению к цвету, кубизм по отношению к форме, концептуализм применительно к иделогемам, мифологемам, штампам сознания).
Анализируемые семантико-числовые системы также суть своего рода "блоки", "кирпичи", отформованные индивидуальным и, главное, коллективным сознанием
Итак, простые холистические системы, с которыми мы имеем и будем иметь дело во всей первой главе, по существу оказались симплексами, элементарными единицами смысла. До сих пор мы не использовали такое название только по одной причине: симплексы – топологические, т.е. континуальные, объекты, и чтобы корректно применять настоящий термин, пришлось бы говорить о семантическом континууме, проверять его строгие математические условия. Это, пожалуй, чересчур. Поэтому, несмотря на то, что современная математика считает геометрическими предметы самой разной природы (например, "точкой" может служить и функция, и множество, и бесконечное пространство), мы не пойдем по ее стопам и в дальнейшем будем использовать понятие "симплекс" в переносном, метафорическом значении. При этом постоянно имея в виду, что речь идет все же о логических, а не о геометрических объектах. Для предпочтения чисто логических, арифметических интерпретаций перед геометрическими существуют и дополнительные причины. Мы рассматриваем генетически "старо-рациональное" (см. Предисловие), а "античность строго различала арифметику и геометрию, традиционно приписывая первой более высокий гносеологический статус" [152, c. 32]. Кроме того, геометрическая наглядность (треугольник, тетраэдр) порой способна оказывать медвежью услугу и уводить процесс понимания по ложному пути. Математика этим не грешит, а менее искушенный читатель может ненароком попасться в ловушку.(26) Итак, потребовалось немало усилий, чтобы ввести в текст всего одно дополнительное слово, зато теперь мы подготовлены к тому, чтобы обратиться к сфере политики – к политическим симплексам.
1 Что такое нецелая или неположительная кратность отношений (ведь она есть количество одновременно взаимодействующих элементов), нам неизвестно. Поскольку кратность n обычно конституирует логику систем класса S, мы будем рассматривать только "логичные" случаи: n – целое неотрицательное (впоследствии лишь однажды, и в очень специальном контексте, придется отступить от данного правила).
2 Вот пара образцов высказываний А.Эйнштейна: "Что касается меня лично, то я должен сказать, что мне, прямо или косвенно, особенно помогли работы Юма и Маха" [307:II, с. 197]. В письме Корнелиусу Ланцшоу от 24.01.1938: "Я начал со скептического эмпиризма, более или менее подобного эмпиризму Маха", см. [124, с. 82].
3 Если бы в наши цели входил исторический обзор, следовало бы упомянуть и предтечу геометродинамики Уильяма К.Клиффорда (1845 – 1879), который еще в 1875 г. писал, что последовательность ощущений, составляющих человеческое сознание, является реальностью, см. [158, с. 122].
4 Скажем, представление о леших – проекция уверенной в себе или разгоряченной фантазии.
5 Так и Коперник в свое время "номиналистически" толковал свою гелиоцентрическую систему: в ней более удобны расчеты, хотя "на самом деле" в центре пребывает, конечно, Земля, как это и предписывает обладающая стажем в полтора тысячелетия и одобренная Церковью теория Птолемея.