Дарвинизм в XX веке
Шрифт:
В конечном счете все это привело к возрождению во второй половине XIX века телеологизма в самых разных формах. И хотя у дарвинизма были весьма авторитетные защитники — Т. Гексли и А. Уоллес в Англии, А. Вейсман в Германии, К. А. Тимирязев в России — не будет ошибкой сказать, что дарвиновское эволюционное учение нуждалось в весьма серьезном углублении и развитии.
XX век с самых первых лет заявил о себе открытиями фундаментального значения. Уже в 1900 году Макс Планк доказал существование дискретных единиц энергии — квантов. Пятью годами позже А. Эйнштейн и М. Смолуховский неопровержимо доказали существование атомов. В том же 1900 году Г. Де Фриз, А. Корренс и К. Чермак совершенно независимо друг от друга, в трех разных странах и на разных объектах пришли к выводу, что наследственность «квантуется»,
Ген существует
…хромосомная теория наследств ценности вошла в золотой фонд науки человечества.
В шестидесятых годах прошлого века в августинском монастыре города Брюнна тогдашней Австрийской империи (ныне город Брно в Чехословакии) проживал странный монах Грегор (в миру — Иоганн) Мендель. Исполнением своих прямых монашеских обязанностей он явно тяготился, зато охотно преподавал в реальном училище, а в свободное время со страстью изучал природу во многих ее проявлениях. Он разводил пчел и выращивал растения в крохотном огороде (7x35 м) под окнами своей кельи, вел метеорологические наблюдения, переписывался со многими видными учеными Европы и живо интересовался последними новинками научной мысли, в том числе нашумевшей книгой некоего эсквайра Дарвина.
Удивляться нечему — рясу Мендель надел лишь для того, чтобы получить образование и верный кусок хлеба, не ведая, что монашеский сан через сто лет некоторые будут ставить ему в вину и даже отрицать на этом основании его безупречные опыты.
А опыты были воистину замечательными. Теперь они изучаются в школах и известны почти всем. Но на всякий случай напомним: Мендель установил, что признаки организмов (в данном случае — обычного гороха) можно разделить на две группы — доминантные и рецессивные [6] . Проявлялись они при скрещивании. Например, желтый цвет семядолей горошин подавлял зеленый цвет. Гибриды первого поколения все имели желтые горошины.
6
Доминантный признак в первом поколении гибридов подавляет рецессивный. Поэтому он получил свое название от латинского «доминус» — господин.
Однако Мендель на этом не остановился и высеял гибридные горошины снова. Странное дело: во втором поколении рецессивный признак — зеленый цвет горошин — вновь возник в среднем в 25 % случаев. На 152 824 желтых горошины оказалось 50 676 зеленых (отношение 3,004:0,996). Гениальность Менделя заключалась в том, что он истолковал полученный факт абсолютно правильно. Наследственные факторы организмов, как он называл гены, распределяются в потомстве случайно. Один ген организм получал от отца, другой — от матери.
Каковы же возможные сочетания генов (в данном случае — зеленых и желтых горошин)?
1. Зеленый + желтый.
2. Желтый + зеленый.
3. Желтый + желтый.
4. Зеленый + зеленый.
В любой из пар, кроме последней, доминантный фактор подавлял рецессивный, и отношение их в потомстве получалось 3:1. Совершенно аналогичный результат мы получили бы, подбрасывая сразу две монеты (договорившись, что выигрывает тот игрок, у которого хотя бы одна монета ляжет орлом кверху). В 25 % выпадает два орла, в 50 % — один орел и одна решка и лишь в 25 % — две решки. Эта аналогия имеет глубокий смысл — она указывает, что отношение 3:1 должно получиться
Историки науки, после того как работа Менделя в 1900 году была переоткрыта, вспомнили, что подобные результаты получали многие исследователи, в том числе и сам Дарвин. Опишем для примера его опыт.
Дарвин скрестил обычный львиный зев с разновидностью, имевшей на верхушке радиально-симметричный, так называемый пелорический цветок. Потомство первого поколения оказалось все с обычными цветами, но во втором «из 127 проростков 88 имели цветы обычной формы, 2 — промежуточной между пелорической и нормальной и 37 — были пелорическими».
С учетом случайного отклонения отношение признаков было близко к 3:1. В этом нетрудно убедиться, подсчитав вероятную ошибку m по формуле
m = ± q(n — q)/n,
где n — сумма всех гибридов, a q — число, которое можно ожидать из соотношения 3:1. Почему же Дарвин не опередил Менделя?
Я не думаю, что причиной была пресловутая дарвиновская нелюбовь к математике. Дело гораздо сложнее. Предшественники Менделя пытались разгадать наследуемость всех признаков организма сразу, не абстрагируясь до судьбы отдельных. В результате первое поколение гибридов им казалось смешанным — ведь в нем проявлялись доминантные гены и со стороны отца, и со стороны матери. Отсюда прямая дорога к некоей слитной наследственности, о которой шла речь в предыдущей главе.
Второй, не менее важный закон Менделя касается гибридов, родители которых различаются по ряду признаков. Оказывается, эти признаки распределяются в потомстве независимо друг от друга, и комбинации их чисто случайны (в опыте Менделя, например, желтый и зеленый цвет горошин и морщинистая и гладкая их поверхность).
Законы Менделя далеко не всем могли понравиться — именно из-за четкого признания случайности в процессе перераспределения наследственных факторов. Поэтому после возрождения менделизма в 1900 году Де Фризом, Корренсом и Чермаком в биологии вспыхнули жаркие споры. Любопытная закономерность: самые непримиримые противники менделевских законов, если они были честными учеными, в конце концов становились их сторонниками и продолжателями дела Менделя.
Вот пример, малоизвестный и убедительный. Наш великий садовод И. В. Мичурин в 1915 году писал: «В последнее время наши неофиты дела гибридизации как-то особенно назойливо стараются нам навязать этот гороховый закон — создание австрийского монаха». Однако Мичурин был настоящим ученым и решил проверить законы Менделя на гибридах обычной яблони с яблоней Недзвецкого. Последний вид — очень удачный партнер для скрещивания: у него красные плоды, красная кора и даже хлорофилл листьев замаскирован красным антоциановым пигментом. Уже в 1917 году Мичурин описал первые подобные опыты, где были получены четкие числовые расщепления, а двадцать лет спустя отмечал: «В законе Менделя я нисколько не отвергаю его достоинств» — и рекомендовал для показательных скрещиваний, демонстрирующих применимость менделизма в генетике плодовых, именно яблоню Недзвецкого, а также краснолистную грушу, сливу и орех. Поэтому было бы кощунством утверждать, что Мичурин до конца дней отвергал менделизм. Все обстояло как раз наоборот.
Колоссально много для развития учения о наследственности сделал американец Томас Гент Морган, который вначале был столь же ярым противником Менделя и решил его опровергнуть на другом объекте — кроликах. Однако попечители Колумбийского университета, где работал Морган, сочли кроликов чересчур дорогими; Морган не пал духом и использовал для опытов крошечную плодовую мушку — дрозофилу. Дрозофила стала классическим объектом генетики — редчайший случай, когда скупость снабженцев оказала науке неоценимую услугу! Дело в том, что за год можно получить 25 поколений дрозофил и разместить на одном лабораторном столе их многотысячные «стада». Помимо этого, в работе с дрозофилой есть какая-то непонятная, но властная притягательность. Я помню, как мне в свое время пришлось поставить на ней несколько опытов — я без особой нужды для основной работы затянул их на добрые полгода и прервал с великим сожалением. Это, как говорят на лабораторном жаргоне, болтливый объект — так много из него познаешь нового.