Чтение онлайн

на главную - закладки

Жанры

Data Science для карьериста
Шрифт:

1.4. Интервью с Робертом Чангом, дата-сайентистом из Airbnb

Роберт Чанг (Robert Chang) – дата-сайентист в Airbnb, который работает над продуктом Airbnb Plus. Ранее он занимался аналитикой продуктов, создавал конвейеры данных и модели, проводил эксперименты в «Команде роста» (Growth team) Twitter. Роберт ведет блог об инженерии данных, дает советы новичкам, а также рассказывает о работе в Airbnb и Twitter на странице https://medium.com/@rchang.

Расскажите о вашем первом опыте в Data Science.

Моей

первой работой был анализ данных в The Washington Post. Еще в 2012 году я был готов оставить учебу и уйти в эту сферу, но не знал, чем именно хочу заниматься. Я надеялся стать специалистом по визуализации данных, так как был впечатлен работой в The New York Times. Когда я пошел на ярмарку вакансий в вузе и увидел, что в The Washington Post требуются сотрудники, я наивно предположил, что они, скорее всего, делают то же самое, что и The New York Times. Я подал заявку и получил работу, не особо вдаваясь в детали.

Если вам нужен пример того, как не следует начинать карьеру в Data Science, возьмите мой случай! Я получил работу в надежде заниматься либо визуализацией данных, либо моделированием, но очень быстро понял, что, скорее, выполняю обязанности инженера данных. Б^ольшая часть моих задач заключалась в создании конвейеров ETL (извлечение, преобразование, загрузка), повторном запуске скриптов SQL и попытках обеспечить запуск отчетов, чтобы можно было представлять ключевые показатели руководству. Тогда я пережил это очень болезненно; я понял, что то, чем мне хотелось заниматься, не соответствовало тому, что было нужно компании, и в конце концов уволился.

Но в последующие годы работы в Twitter и Airbnb я понял, что столкнулся с нормой, а не исключением. При работе с данными их нужно наращивать слой за слоем. Моника Рогати (Monica Rogati) опубликовала знаменитую статью об иерархии потребностей Data Science, попав в самую точку . Но в то время мне не хватало опыта, чтобы оценить, как в действительности устроена работа в этой сфере.

На что следует обращать внимание при поиске работы в Data Science?

При поиске вакансий вам следует обращать внимание на состоянии инфраструктуры данных в компании. Если вы устроитесь в организацию, где куча сырых данных даже не размещена в хранилище, то уйдут месяцы или даже годы, прежде чем вы займетесь чем-то интересным вроде аналитики, экспериментов или машинного обучения. Если вы на такое не рассчитываете, то этап развития компании совершенно не будет соответствовать тому вкладу, который вы хотите внести в организацию.

Чтобы оценить ситуацию, можно задать вопросы вроде: «Есть ли у вас команда по созданию инфраструктуры данных?», «Как давно она создана?», «На что похож стек данных?», «Есть ли у вас команда дата-инженеров?», «Как они взаимодействуют с дата-сайентистами?», «Есть ли у вас процесс инструментального анализа логов, построения таблиц данных и помещения их в хранилище при создании нового продукта?» Если всего этого нет, вы станете частью команды, создающей все с нуля; приготовьтесь потратить на это немало времени.

Второе, на что нужно обращать внимание, – это люди. Особенно присмотритесь к трем типам сотрудников. Полагаю, вы не хотите быть первым дата-сайентистом в компании. Тогда вам следует искать команду

с опытным руководителем. Он знает, как создать и поддерживать хорошую инфраструктуру и процессы, чтобы работа специалистов была эффективной. Также ищите менеджера, который поддерживает постоянное обучение. Наконец, очень важно, особенно для новичков, работать с техническим руководителем проекта или старшим специалистом по данным, у которого много практического опыта. Именно этот человек помогает вам лучше всего справиться с ежедневными задачами.

Какие навыки нужны дата-сайентисту?

Я думаю, это зависит от того, на какую должность вы претендуете и чего от вас ожидает работодатель. Престижные компании, как правило, задают высокую планку – иногда необоснованно высокую, ведь к ним выстраивается очередь из желающих. Обычно они ищут «единорогов» – тех, кто работает с R или Python, а также отлично разбирается в инженерии данных, проектировании экспериментов, создании конвейеров ETL и моделей с последующим внедрением в производство. Очень уж много требований к кандидатам! Хотя со временем вы можете освоить все эти полезные навыки, не думаю, что они так уж нужны для начала работы в отрасли.

Если вы знаете R или Python и немножко SQL, это уже довольно неплохо для старта. Здорово, если вы можете выучить что-то наперед в целях карьеры, но мне кажется, что это необязательно. Гораздо важнее в принципе любить учиться. У ведущих технологических компаний могут быть более высокие требования, но они нужны скорее не для работы, а для того, чтобы выделить вас среди остальных. Следует различать основные навыки, необходимые для начала карьеры в Data Science, и те, которые неплохо бы иметь сотрудникам топовых компаний.

Итоги

• Набор навыков в Data Science зависит от людей и должностей. Хотя некоторые знания являются фундаментальными, специалисты по работе с данными не обязательно должны быть экспертами во всех смежных областях.

• У работы в Data Science разные направления: предоставление правильных, очищенных данных стейкхолдерам (аналитика), развертывание моделей МО в производство (машинное обучение) и использование данных для принятия решений (теория принятия решений).

2. Типы компаний в Data Science

В этой главе

• Типы компаний, нанимающие дата-сайентистов.

• Плюсы и минусы каждого типа компании.

• Комплекты технологий, которые можно увидеть на разных должностях.

Как уже было сказано в главе 1, в Data Science есть много разных специализаций: инженер-исследователь, инженер по машинному обучению, бизнес-аналитик и другие. Ваши рабочие обязанности будут зависеть от должности, а также от компании, в которую вы устроились. Ее размер, возраст, отрасль – все это влияет на типы проектов, сопутствующие технологии и командную культуру. Умение разбираться в архетипах компаний лучше подготовит вас к поиску работы, будь то ваша первая или очередная должность в Data Science.

Поделиться:
Популярные книги

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Эволюция мага

Лисина Александра
2. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эволюция мага

Прорвемся, опера! Книга 3

Киров Никита
3. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 3

Демон

Парсиев Дмитрий
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Демон

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Офицер

Земляной Андрей Борисович
1. Офицер
Фантастика:
боевая фантастика
7.21
рейтинг книги
Офицер

Призыватель нулевого ранга. Том 3

Дубов Дмитрий
3. Эпоха Гардара
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Призыватель нулевого ранга. Том 3

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

Злыднев Мир. Дилогия

Чекрыгин Егор
Злыднев мир
Фантастика:
фэнтези
7.67
рейтинг книги
Злыднев Мир. Дилогия