Чтение онлайн

на главную - закладки

Жанры

Data Science для карьериста
Шрифт:

1.1.1. Математика/статистика

На начальном уровне математика и статистика являются базой в работе с данными. Мы разделяем эту базу на три уровня знания:

• Существование методов. Если вы не знаете о какой-либо возможности, вы не можете ее использовать. Если дата-сайентисту нужно сгруппировать похожих клиентов, знание того, что это можно сделать статистическим методом (с помощью кластерного анализа), станет первым шагом.

• Как применять методы. Специалист по работе с данными должен не просто знать много методов – он должен различать нюансы их применения. Важно писать такой код, где они не только применяются, но и настраиваются. Если дата-сайентист хочет использовать кластеризацию методом k

средних, чтобы сгруппировать покупателей, он должен уметь делать это на языке программирования типа R или Python. Также он должен понимать, как настроить параметры метода, например как выбрать количество создаваемых групп.

• Как выбрать подходящий метод. В DS используется огромное количество методов, поэтому для дата-сайентиста важно быстро оценить, какой из них будет самым эффективным в каждом случае. В нашем примере с группировкой покупателей, даже если специалист сосредоточился на кластеризации, он может применять десятки различных методов и алгоритмов. Вместо того чтобы перебирать все доступные методы, он должен сразу отбросить большую их часть и сосредоточиться всего на нескольких.

Эти типы навыков постоянно применяются в задачах по работе с данными. Приведем другой пример. Предположим, вы работаете в компании, занимающейся e-commerce. Ваш бизнес-партнер может поинтересоваться, в каких странах у вас самый большой средний чек. Это очень простой вопрос, если у вас есть готовые данные. Но вместо того, чтобы просто предоставить информацию и позволить партнеру делать выводы самостоятельно, вы можете копнуть глубже. Если у вас есть один заказ из страны А на $100 и тысяча заказов из страны Б средней стоимостью $75, то формально в стране А средний чек выше. Но можете ли вы с уверенностью сказать, что ваш бизнес-партнер должен вложиться в рекламу в стране А, чтобы увеличить количество заказов? Вряд ли. У вас есть только одна единица данных из этой страны, и она может оказаться статистически незначимой. А вот если бы у вас было 500 заказов из страны А, можно было бы протестировать разницу в стоимости заказов. Это значит, что, если бы эти показатели для стран А и Б действительно не различались, вы бы не получили прежний результат. В этом длинном примере дается оценка того, какие подходы были разумными, что следует учитывать и какие результаты были признаны несущественными.

1.1.2. Базы данных и программирование

Программирование и базы данных (БД) основываются на извлечении информации из БД компаний и написании чистого, эффективного, легко настраиваемого кода. Эти навыки во многом схожи с тем, что должен знать разработчик программного обеспечения. Вот только дата-сайентисты должны писать код, который выполняет анализ с неизвестным итогом, а не выдает заранее заданный результат. Стек данных каждой компании уникален, поэтому какой-то определенный набор технических знаний специалисту не нужен. В целом вам нужно уметь получать данные из базы, очищать их, обрабатывать, обобщать, визуализировать и обмениваться ими.

R и Python – основные языки программирования для большинства профессий DS. R берет свое начало в статистике и, как правило, лучше всего подходит для статистического анализа, моделирования, визуализации и составления отчетов. Python создавался как язык для разработки программного обеспечения и в дальнейшем приобрел огромную популярность в обработке данных. Python лучше R справляется с обработкой больших датасетов, проводит машинное обучение и поддерживает алгоритмы, работающие в реальном времени (например, модули рекомендаций в Amazon). Но благодаря вкладу многих участников возможности двух языков сейчас почти равны. Специалисты по работе с данными успешно используют R для создания моделей машинного обучения, запускаемых миллионы раз в неделю, а также делают чистый, презентабельный статистический анализ на Python.

R и Python наиболее популярны для обработки данных по нескольким причинам:

• Они бесплатны, и у них открытый исходный код. Это означает, что он создается многими участниками, а не одной определенной компанией или группой пользователей. В этих языках есть много пакетов, или библиотек (готовых блоков кода), которые можно использовать для сбора данных, их обработки, визуализации, статистического анализа и машинного обучения.

• Благодаря большому количеству пользователей каждого из этих языков дата-сайентистам легко найти помощь при возникновении проблем. И хотя в каких-то компаниях до сих пор используют SAS, SPSS, STATA, MATLAB или

другие платные приложения, многие из них начинают переходить в своей работе на R или Python.

Хотя большая часть анализа при обработке данных осуществляется на R или Python, часто приходится извлекать информацию из БД, и здесь на сцену выходит язык SQL. SQL – это язык программирования, который используется в большинстве БД для внутренней обработки данных и извлечения их из базы. Представим для примера дата-сайентиста, которому нужно проанализировать сотни миллионов записей о заказах клиентов компании и спрогнозировать, как со временем будет изменяться ежедневное количество заказов. Для начала он, скорее всего, напишет SQL-запрос для получения количества заказов за каждый день, после чего возьмет полученные данные и запустит статистический прогноз на R или Python. По этой причине SQL очень популярен в Data Science, и без знания этого языка вы далеко не продвинетесь.

Можно ли стать дата-сайентистом без программирования?

С данными можно успешно проделывать много вещей, используя только Excel, Tableau или другие BI-инструменты с графическими интерфейсами. Хотя код в них не пишется, часто заявляется, что этот софт так же функционален, как и программирование на R или Python. На самом деле многие дата-сайентисты действительно порой пользуются этими программами. Но могут ли они быть исчерпывающим набором инструментов? Мы говорим «нет». В реальности компаний, где DS-командам не приходится писать код, очень мало. Но даже если вам повезет оказаться в одной из них, у программирования все же есть ряд плюсов.

Первое преимущество программирования – воспроизводимость. Когда вы пишете код, а не пользуетесь программным обеспечением типа point-and-click, можно повторно запускать его при изменении данных хоть каждый день, хоть через полгода. Это преимущество также связано с контролем версий: вместо того чтобы переименовывать файл каждый раз при изменении кода, можно сохранить один файл и видеть всю его историю.

Второе преимущество – гибкость. Например, если в Tableau нет нужного вам типа графа, вы не сможете его создать. Но с помощью программирования можно написать собственный код, чтобы сделать то, о чем создатели и разработчики программных средств никогда даже не думали.

Третье и последнее преимущество языков с открытым исходным кодом, таких как Python и R, – это вклад в сообщество. Тысячи людей создают пакеты и публикуют их в открытом доступе на GitHub и/или CRAN (для R) и pip (для Python). Этот код можно скачать и использовать для решения своих задач. Так вы не зависите от числа функций, предлагаемых одной компанией или группой людей.

Другой ключевой навык – использование контроля версий для отслеживания изменений кода. Он позволяет организовать хранение файлов, выполнять откат до предыдущих версий и видеть, кто, когда и какие изменения вносил в файл. Этот навык чрезвычайно важен в Data Science и в разработке программного обеспечения. Например, если кто-то случайно изменил файл и испортил ваш код, вы можете восстановить его или посмотреть, что изменилось.

Безусловно, наиболее популярная система для контроля версий – это Git. Он часто используется вместе с GitHub, веб-службой хостинга для Git. Git позволяет сохранять (фиксировать) вносимые изменения, а также видеть всю историю проекта и то, как она менялась с каждой фиксацией. Если два человека по отдельности работают над одним и тем же файлом, Git гарантирует, что чья-либо работа не будет случайно удалена или перезаписана. Если вы захотите поделиться своим кодом или запустить что-то в производство, во многих компаниях вам обязательно потребуется Git, особенно если это компания с сильной командой проектировщиков.

1.1.3. Понимание бизнеса

Любая достаточно развитая технология неотличима от магии.

Артур Чарльз Кларк

У компаний, мягко говоря, разное понимание того, как работает Data Science. Часто руководство просто хочет решить определенную задачу и обращается к своим волшебникам DS. Основной навык, необходимый в Data Science, – это умение преобразовать бизнес-ситуацию в вопрос о данных, найти ответ на их основе и предоставить бизнес-решение. Бизнесмен может спросить: «Почему наши клиенты уходят?» Но у Python нет импортируемого пакета «почему уходят клиенты» – вы сами должны понять, как ответить на этот вопрос с помощью данных.

Поделиться:
Популярные книги

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI

Сколько стоит любовь

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.22
рейтинг книги
Сколько стоит любовь

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Офицер империи

Земляной Андрей Борисович
2. Страж [Земляной]
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.50
рейтинг книги
Офицер империи

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Небо в огне. Штурмовик из будущего

Политов Дмитрий Валерьевич
Военно-историческая фантастика
Фантастика:
боевая фантастика
7.42
рейтинг книги
Небо в огне. Штурмовик из будущего

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII