Декарт
Шрифт:
По мысли Декарта, метод является орудием человека, и схема взаимодействия человек — метод в процессе работы очень проста и сводится к следующему: метод совершенствует определенные способности человека, доводя само совершенство до крайних границ. Происходит это в ходе анализа способностей, состоящего в сведении их к элементарнейшим, далее нерасчленяемым, простейшим действиям. Но в таком виде они теряют всякую конкретную связь с той или иной конкретной особенностью конкретного индивида и становятся в силу этого элементами метода, в терминологии Декарта — обретают статут простейших положений, аксиом, на которых базируется метод. Такова суть первых семи «законополагающих» «Правил…». Именно в постоянном движении этого «челнока» декартова метода разворачивается нить дедуктивного следования и ткется основной узор теоретических конструкций. Вот почему, с другой стороны, аксиомы, или простейшие положения метода, совпадают с
Мы рассмотрели лишь один аспект орудийного использования метода: отношение субъект деятельности — орудие деятельности. Но взятое само по себе, это отношение оставалось бы бесплодной схемой (столь характерной для всего аппарата поздней схоластики), если бы не его обращенность на объект деятельности — материальный мир в целом, со всем бесчисленным множеством составляющих его предметов и явлений.
В рамках жесткого Декартова расчленения на субъект познания и независимый от него объективный мир процесс познания осуществляется посредством интуиции и дедукции. Интуиция схватывает цельные, «фигурные» геометрические образы, которые посредством дедукции расчленяются и тем самым объясняются и понимаются. И если интуицию, согласно Декарту, можно рассматривать как некий аналог геометрии, геометрического метода (или, точнее говоря, геометрического «варианта» всеобщего метода), то дедукция имеет явную тенденцию к методу алгебраическому. Здесь, таким образом, развивается картезианская концепция математики, согласно которой алгебра является способом понимания геометрии.
Для Декарта критерием конечной объективности предмета является его бесспорность и очевидность для ума. Именно через «самоочевидность» раскрывается тождество объективности и логичности. В качестве основания такого тождества утверждается субстанциональность вводимой Декартом в «Правиле XIV» протяженности. Протяженное и дедуктивное — вот два образа непрерывности, которые взаимоопределяют друг друга. Но все дело в том, что их взаимоотношение не является непосредственным, хотя на первый взгляд это представляется именно так. Аксиомы, или простейшие положения метода, оказываются теми аксиомами, на которых базируется теория, а простейшие правила действия субъекта обретают в методе характер правил вывода из аксиом. И снова в силу предельной простоты, абстрактности и тех, и других аксиомы сами задают простейшие правила вывода.
Понимаю, все это настолько нелепо звучит для уха современного читателя, что если не раньше, то теперь уж, вероятно, не правила, а сам он, читатель, «выведен из себя». Да и автору самому, признаться, стало как-то не по себе: если в самом своем «замысле» и последующем его воплощении и развитии вся наука, целостная «теоретическая система — как вытекает из только что сказанного — вновь может быть представлена как…геометрический образ — предмет интуитивной очевидности, но теперь уже …сам в себе несущий свое обоснование»(23, стр. 206. Курсив мой. — Я. Л.), то куда все это девалось, почему сегодня чуть ли не каждая дисциплина должна развивать, параллельно со своим теоретическим позитивным «телом», гигантский аппарат обоснования своих собственных оснований, и каждый раз дело кончается, как правило, набором парадоксов?
Сделаем небольшое отступление. В так называемых «приложениях» общего метода отмеченное обстоятельство — аксиомы сами задают простейшие правила вывода — воплощается, например, в физике введением понятия инерции, в «Геометрии» — фактическим включением аксиом и определений в простейшие возможные построения — постулаты. В первом случае ответ на вопрос «как движется?» одновременно объясняет и «почему движется?». Это, забежим вперед, — спинозовская «causa sui» [12] физики, идеал науки на каждом этапе ее развития. Что касается «Геометрии», то в рамках простейшего математического аппарата, используемого Декартом, — теории пропорциональных отношений, — таким постулатом является построение единичного отрезка.Как представляется, в этом коренится причина того, почему Декарт, уже обладая разработанным им аппаратом алгебраической символики, конечную цель решения алгебраических уравнений сводит к построению отрезков прямой…
12
Причина самой себя (лат.).
Итак, перед нами элементарный акт познания (деятельности) с «компонентами»: субъект — метод — объект, «ядро» этой «триады» — метод.
Таким образом, заметим попутно,
Действительно:
Во-первых, метод, согласно Декарту, представляет собой совокупность правил перевода интуитивного в дедуктивное, одновременного — в последовательное.
Во-вторых, он задает способ сведения (регресса) к «простейшим» (аксиомам — исходным геометрическим образам), и этим регрессом является доказательство. Выведение из «простейших» является обращением доказательства и протекает параллельно последнему. Оно, по выражению Декарта, возвращается по тем же «ступеням». Происходит это по правилам вывода, обретенным в конечной точке регресса, в пункте «возврата», и позволяет осознать само доказательство. Вот почему вывод и тождествен («по тем же ступеням»), и не тождествен («осознание») доказательству. Естественно, что временное здесь с необходимостью исчезает, растворяясь в упорядоченной последовательности интуитивных актов. Для ясного понимания этого обстоятельства следует учесть, что Декарт, говоря о движении вообще (движении как изменении, как всеобщем принципе — в контексте всеобщего метода, а не того или иного из его «приложений»), имеет в виду мыслительное движение. Время здесь является мерой, «числом» движения.
Наконец, в-третьих, следует упомянуть об уже отмеченном двойственном характере самих «Правил для руководства ума». Для того чтобы пояснить эту мысль, вернемся на время к тому реальному эксперименту, который осуществил Декарт, руководствуясь своими первоначальными правилами, в диоптрике. Ведь если мы вдумаемся, то поймем, что эксперимент Декарта носил двойной характер. Это был естественнонаучный эксперимент в обычном смысле этого слова (линзы, преломление света, фокусные расстояния и т. п.). Но это был одновременно своеобразный experimentum crucis [13] и для самих декартовских правил. Здесь вопрос стоял так: а годятся ли действительно эти правила как руководящая нить при совершении открытий, или они носят чисто схоластический, словесный, принципиально непроверяемый характер? Реальный опыт, поставленный Декартом, послужил ответом на оба эти вопроса: и вопроса, касающегося «природы вещей», и вопроса, касающегося природы ума.
13
Решающий эксперимент (лат.).
Но самое интересное в том, что необходимость такого эксперимента в отношении самих декартовских правил — это не просто частный биографический факт «из жизни Декарта», нет: эта необходимость заложена в самих правилах.
Не случайно последние правила в этом незаконченном трактате касаются уже не общих логических требований, но необходимого сочетания геометрического и алгебраического подходов при решении естественнонаучных проблем. В заключительных «Правилах» Декарт направляет своего «героя» — ум исследователя Нового времени — на вполне определенный объект, обнаруживает, что его рождающийся метод вовсе не является абстрактным методом вообще, а по самой своей природе, в самый момент своего рождения ориентирован на изучение того мира, в котором господствуют законы геометрической оптики.
В движении этого эксперимента соединяются в логически связанное целое все основные правила метода. Они действуют уже не рядом друг с другом, а последовательно, прямо обнаруживая свою эвристическую силу. В этом опыте реализуется то обращение и взаимопревращение дедукции и интуиции, которое составляет логическую схему метода Декарта. Далее. Именно в сфере оптики реализуется (и у самого Декарта, и в дальнейшем развитии науки) возможность геометрического понимания физических объектов и возможность полагания движений в их динамической определенности как геометрико-кинематических элементов — линий, углов, фигур. Наконец, именно в этом эксперименте была впервые опробована эвристическая сила взаимопревращения аналитических и геометрических представлений. Так в простеньком и достаточно частном эксперименте были испытаны все те «компоненты» Декартова замысла математизации физики, которые затем разрослись в сложную методологическую и теоретическую систему современной науки.