Десять великих идей науки. Как устроен наш мир.
Шрифт:
Эйнштейн открыл это шокирующее обстоятельство и воспользовался им. Сначала он по существу предположил, что все наблюдатели, населяющие свободно падающие кабины лифтов, написали бы одинаковые учебники физики. В этом суть содержания принципа эквивалентности. В частности, наблюдатели, падающие в кабинах, делающие измерения и обменивающиеся их результатами, испытывали бы те же сокращения пространства и времени, которые предсказываются частной теорией относительности. Мы можем выразить это утверждение в более геометрических терминах: геометрия пространства-времени является одинаковой (и является геометрией Минковского) во всех свободно падающих кабинах лифтов. Итак, все, что мы ранее обсуждали касательно частной теории относительности, приложимо к любой такой свободно падающей кабине.
Однако величайшим достижением Эйнштейна были его размышления о том, как геометрия в
Рис. 9.12.Локальная геометрия в каждой точке пространства является евклидовой (представлена плоскими кружками, прикрепленными к разным точкам сферы). Однако около тяжелого тела, такого как звезда или планета, пространство искривляется, и локальные евклидовы области изгибаются и скручиваются относительно других локальных областей. Общая теория относительности Эйнштейна показывает, как связать различные локальные системы координат друг с другом.
Ранее в этой главе мы получили некоторое представление о пространстве-времени. Теперь мы должны перенести этот опыт развития гибкости ума на следующую стадию, на гибкость пространства-времени, и получить представление об искривленномпространстве-времени. Это не так ужасно, как, возможно, звучит, поскольку теперь мы можем отодвинуть геометрию Минковского на задворки сознания и попытаться забыть о ее сложности. На деле многие считают качественныеидеи общей теории относительности гораздо проще, чем идеи частной теории относительности, потому что здесь можно представлять себе искривленное пространство (что легко), а не искривленное пространство-время (что нелегко). Это заблуждение, поскольку общая теория относительности относится к искривленному пространству-времени, но это приемлемое заблуждение, поскольку оно делает всю концепцию доступной, поэтому мы будем продолжать изложение, пользуясь им.
Итак, сначала мы сосредоточим внимание на искривленном пространстве, потому что эта концепция довольно проста. Как и прежде, концептуально легче урезать число измерений, которые мы должны попытаться вообразить, а потом вновь достроить это число. Однако, чтобы вообразить даже двумерную искривленную поверхность, нам, очевидно, уже необходимы три измерения, чтобы представить себе, «в чем» эта поверхность искривлена. Поэтому, как нетрудно видеть, для того чтобы представить себе четырехмерное искривленное пространство-время, мы нуждаемся в пяти измерениях! Я не буду просить вас проделать это, поскольку не могу сам (и не знаю никого, кто мог бы), но если вы хотите все же визуализовать искривленное пространство-время в полной мере, вот что вам следует попытаться сделать. Техническим термином для представления искривленного пространства в размерности на единицу большей является «вложение» его в пространство на единицу большей размерности. Чтобы представить себе четырехмерное искривленное пространство-время, вам следовало бы вложить его в пространство пяти измерений.
Давайте на минуту остановимся на двумерном искривленном пространстве (а не на пространстве-времени). Чтобы представить себе его искривленным, вообразим 2-пространство, поверхность, вложенную в 3-пространство, объем. Представим себе 2-пространство как поверхность 3-сферы (обычной сферы, похожей на идеализированную Землю). Теперь представим себе сцену, в которой я стою на экваторе на нулевом меридиане (это помещает меня в неуютную влажность океана где-то
Рис. 9.13.Вы стартуете на экваторе и упорно шагаете вверх по гринвичскому меридиану (0° долготы), все время лицом вперед. Я делаю то же самое, но начинаю из точки экватора при 90° западной долготы. Когда мы достигаем полюса, наши носы сталкиваются. Поэтому эти два меридиана не параллельны: в такой геометрии нет параллельных линий. Данная иллюстрация также показывает, как представить себе двумерную поверхность однородной положительной кривизны в виде поверхности трехмерной сферы. Мы говорим, что двумерная поверхность «вложена» в двумерное пространство.
Немедленным следствием существования неевклидовых геометрий является вывод, что геометрия есть наука экспериментальная, а не нечто (как думал Иммануил Кант, о чем мы узнаем в главе 10), справедливость чего можно установить одной лишь интроспекцией. Одна лишь интроспекция никогда не приводит к истине, что так чудесно проиллюстрировал Аристотель; интроспекция в союзе с экспериментом, конечно — темой нашей книги, — является необычайно чудесным и надежным гидом, что так великолепно проиллюстрировал Галилей. Мы стоим перед выбором перспективы для геометрии пространства: быть ли ей евклидовой, как, сидя в своих креслах, целых 2000 лет полагали Евклид и его последователи, или неевклидовой. Чтобы решить этот вопрос, мы должны обратиться к эксперименту и увидеть, например, столкнемся ли мы носами, если будем идти по параллельным путям достаточно далеко. Карл Фридрих Гаусс (1777-1855), один из величайших математиков, имел некоторое представление о том, что у евклидовой геометрии могут быть конкуренты:
На самом деле, поэтому я время от времени в шутку выражаю пожелание, чтобы геометрия Евклида была неверна.
Однажды этот концептуальный тупик был пробит в наибольшей мере немецким математиком с трагически короткой жизнью, Бернхардом Риманом (1826-1866). В своей выдающейся лекции, прочитанной в 1854 г. по случаю вступления в должность, он дал человеческому уму свободу, достаточную для того, чтобы вообразить себе неевклидовы пространства уже и с отрицательной кривизной. Рисунок 9.14 показывает двумерную поверхность отрицательной кривизны, вложенную в трехмерное пространство. Когда вы сидите в седле, вас поддерживает двумерная поверхность отрицательной кривизны. В этом пространстве через заданную точку можно провести бесконечное число линий, параллельных данной.
Рис. 9.14.Двумерная поверхность с отрицательной кривизной седлообразной формы, вложенная в трехмерное пространство.
Коль скоро мы преодолели интеллектуальный бугор и признали то обстоятельство, что существуют разные типы неевклидовых геометрий, мы способны перейти к представлению о пространстве, геометрия которого может меняться от места к месту. То есть различные области — пространства могут иметь разную кривизну. Например, мы можем представить себе пространство, похожее на гантель, полученное сжатием сферы в области экватора, превращающем его в талию гантели. Это пространство будет иметь положительную кривизну около полюсов и отрицательную кривизну в седлообразной окрестности экватора. Мы могли бы пойти дальше и вообразить более сложные пространства, втыкая пальцы в эту поверхность и создавая небольшие кратеры, испещряющие ее так, чтобы кривизна менялась от места к месту. Вам может понравиться рассматривать повседневные объекты, которые имеют поверхности с кривизной, меняющейся от места к месту (например, вы сами).