Девятый знак
Шрифт:
Быть может, эта история до некоторой степени поможет читателю представить себе, с какими трудностями приходится сталкиваться исследователям и работникам промышленности, работающим в области добычи редких элементов.
Радий — один из самых редких металлов. Настолько редкий, что почва громадного двора, пропитанная раствором всего четверти грамма соли радия, кажется в высшей степени обогащенной им. При получении этого элемента приходится иметь дело с гораздо более бедными рудами.
Но есть элементы, которые ненамного отстали от чемпиона редкостности — радия. Вот хотя бы металл рений. Мы еще будем вести подробный разговор
Галлий в настоящее время добывают — в промышленном масштабе — из золы некоторых сортов каменного угля. Если галлия в этой золе содержится больше чем две тысячных процента — двадцать граммов в одной тонне! — то такая зола уже считается отличным исходным материалом для получения галлия.
Почти то же самое можно сказать о всех остальных элементах, которым природа отвела лишь тесную и неуютную каморку в доме химических элементов — земной коре.
Быть может, прочтя об этом, некоторые скажут так:
«Ну что ж, на природу обижаться не приходится. Если редких элементов так мало, то, как говорится, бог с ними. Мы же можем обойтись теми элементами, которые природа представила в наше распоряжение с избытком».
Заключение это неправильно прежде всего потому, что редкие и поэтому малоизученные химические элементы таят в себе такие неожиданности, которым подивились бы даже богатые воображением авторы научно-фантастических произведений.
В этой главе мы расскажем о том, что дало науке и технике подробное исследование свойств некоторых из малоизученных прежде химических элементов. На примере этих элементов можно будет достаточно четко представить себе, что сулят науке и технике экспедиции в малоисследованные просторы «химической Антарктиды».
Вряд ли стоит в каждом отдельном случае рассказывать, каким образом удается выделять соединения того или иного редкого элемента. Все методы, к которым приходится прибегать, сильно смахивают на те, которые мы описывали в предыдущих главах. Гораздо важнее другое: свойства этих элементов и применение, которое они находят сейчас или получат в ближайшем будущем.
Если бы мне пришлось делать мультипликационный научно-популярный фильм о химических элементах, я бы обязательно сочинил смешную, но поучительную историю о том, как элементы устроили спортивные состязания. Мы бы увидели, как «сражается» с элементами чрезвычайно активный фтор. Немало веселых кадров доставили бы нам неповоротливые лентяи — инертные газы. Вихрем носился бы по полю маленький и юркий водород. Истекала бы тяжелыми слезами плакса ртуть. Увесисто ступая, ходил бы тяжеловес уран.
Почти
Третье «достижение» лития — громадное различие между температурами плавления и кипения — почти 1200°. Сравните эту цифру с аналогичной величиной для воды, где она равна всего 100°. В-четвертых, литий обладает феноменальной особенностью соединяться со многими элементами, в том числе даже с таким «гордецом», как азот. В-пятых… Впрочем, перечисленного будет достаточно, чтобы можно было признать за литием право занимать во всех отношениях выдающееся место среди других элементов Периодической системы.
Но тем более скромной представляется та роль, которую до самого недавнего времени играл литий и его соединения в промышленности. Причина этого лежит в том, что свойства редкого металла лития не были изучены в достаточной степени. Впрочем, сейчас литий может считать себя вознагражденным с избытком.
Никто, разумеется, не пытался подсчитать, о каком химическом соединении сейчас больше всего пишут в научных журналах. Да и что полезного может дать этот утомительный и кропотливый подсчет? Но если бы все же такая работа была проделана, то я не сомневаюсь, что первое место занял бы гидрид [7] лития.
7
Гидридаминазываются соединения элементов с водородом.
Давно было известно, что литий может соединяться с водородом, образуя соединение, называемое гидридом лития. Это соединение интересно тем, что один килограмм его содержит без малого полторы тысячи литров водорода. Водород легко выделяется, если гидрид бросить в воду. Но кто мог еще несколько лет назад предполагать, что гидрид лития станет самым мощным из всех когда-либо известных людям взрывчатых веществ? И, уж наверное, никто не смог бы предсказать, что с помощью этого простого химического соединения ученые смогут воссоздать на Земле процессы, которые до этого времени протекали лишь на Солнце.
Собственно говоря, речь идет не о гидриде, а о дейтериде лития: соединения лития с тяжелым изотопом водорода — дейтерием. Однако с химической точки зрения разницы между этими веществами нет никакой. Дейтерид лития является основой заряда так называемых водородных бомб. При срабатывании уранового или плутониевого запала возникает высокая температура, под действием которой начинается ядерная реакция. Литий и дейтерий, соединяясь друг с другом, превращаются в элемент гелий. При этом высвобождается колоссальное количество энергии.