Диалектика Материи
Шрифт:
Образование донорно-акцепторной связи протекает по пути, отличающемуся от механизма ковалентной связи, но приводит к такому же результату. При этом происходит усложнение состава и структуры веществ с образованием сложных "комплексных" соединений, несущих свою строго определенную функциональную нагрузку. Как правило, один из атомов (обычно акцептор), располагаясь в центре, координирует вокруг себя единицы, вступающие с ним в донорно-акцепторную связь, называемую еще поэтому координативной связью. За счет координативной связи происходит химическое насыщение атома, в результате чего внутренняя энергия системы взаимодействующих атомов понижается. Благодаря этому общая валентность атома (как суммы всех его связей) может быть достаточно высокой.
Итак, при установлении химической
В общем случае образование каждой дополнительной валентной связи приводит к дальнейшей стабилизации молекулы, поэтому наиболее устойчивыми молекулами являются такие, в атомах которых все стабильные атомные орбитали либо использованы для образования связей, либо заняты неподеленными парами электронов.
Ковалентная, как и донорно-акцепторная химическая связь образуется между атомами, расположенными в пространстве друг относительно друга определенным образом - направленно. И поэтому, чем полнее в пространстве перекрываются друг с другом две атомные орбитали, участвующие в химической связи, тем меньшим запасом энергии обладают электроны, находящиеся в области перекрывания и осуществляющие связь, и тем прочнее химическая связь между этими атомами. Направленность химических связей в пространстве придает всем многоатомным частицам (молекулам, ионам, радикалам) определенную конфигурацию. От нее зависит внутренняя структура вещества, а также его фн. свойства.
Параллельно с развитием структуры фщ. единиц уровня Г происходило дальнейшее разделение их фн. свойств. Примером этому может служить деление единиц на диамагнитные и парамагнитные. Первые оказывают прохождению магнитных силовых линий сопротивление большее, чем "вакуум", а вторые проводят их лучше, чем "вакуум". Поэтому внешнее магнитное поле выталкивает диамагнитные вещества и втягивает парамагнитные. Столь различное их поведение объясняется особенностями структурного построения, диктуемого законами нижних организационных уровней, и действие которых определяет характер внутренних магнитных полей вещества, складывающихся из собственных магнитных моментов нуклонов и электронов. Магнитный момент любого атома определяется все же, главным образом, суммарным спиновым магнитным моментом электронов, так как магнитные моменты протонов и нейтронов примерно на три порядка меньше моментов электронов. Если два электрона находятся в одной орбитали, то их магнитные поля замыкаются, так как оба они могут иметь антипараллельные спины. Поэтому, если в веществе, представляющем сумму однородных единиц, магнитные моменты всех электронов взаимно скомпенсированы, то есть все электроны спарены, то это вещество диамагнитное. Напротив, если в орбиталях имеются холостые электроны, то вещесто проявляет парамагнетизм. Примерами диамагнитных веществ могут служить молекулярные водород, азот, фтор, углерод и литий (в газообразном состоянии). К парамагнитным относятся молекулярный бор, кислород, окись азота.
Вещества с аномально высокой магнитной восприимчивостью (например, железо) относятся к ферромагнитным. Однако, ферромагнетизм проявляется ими только в твердом состоянии.
Здесь следует также отметить, что одним из важных видов химических взаимодействий, возникших в период движения Материи в своем развитии по уровню Г, являются окислительно-восстановительные реакции. К ним относятся реакции, в результате которых изменяются степени окисленности элементов, то есть происходит взаимное перемещение электронов вступивших в реакцию веществ, при этом происходит отдача электронов одними молекулами (окисление) и присоединение их другими (восстановление). Окислительно-восстановительные реакции играют большую роль при протекании в биологических системах таких процессов,
Таким образом, в ходе развития Материи по организационному уровню Г функциональная дифференциация атомов стала причиной их структурной интеграции в молекулы.
Уровень Д
Все окружающие нас тела и вещества представляют собой совокупности большого числа фщ. единиц уровня Г - молекул, ионов, радикалов со строго определенными фн. свойствами - тем или иным образом расположенным в пространстве и объединенным в соответствующие системные образования уровня Д. Их взаимное расположение в пространстве не является случайным, а подчинено объективным законам общей теории систем, в соответствии с которыми они заполняют предназначенные для них фн. ячейки в структурах системных образований более высокого порядка. В зависимости от характера взаимодействий фщ. единиц, регламентируемых алгоритмами соответствующих фн. ячеек, объединяющее их вещество находится в одном из фазовых состояний, свойства которого предопределяют структуру фиксирования фн. ячеек и поведение заполняющих их фщ. единиц.
Различают три основных типа фазовых состояний вещества - газообразное, жидкое и твердое. Кроме того, существуют такие фазовые состояния, как плазменное и сверхпроводимое. Отличие всех состояний друг от друга заключается в системной организации входящих в них фщ. единиц, их взаимном расположении в пространстве и уровне их энергии. При переходе вещества из одного фазового состояния в другое прежде всего происходит структурная перестройка системы фн. ячеек, отражающей запас внутренней энергии вещества, его теплоемкости, плотности и т.п. Вместе с тем, любая система единиц уровня Г обладает определенным числом степеней свободы, равным числу условий, которые могут быть изменены произвольно (в определенных пределах), не вызывая в системе фазовых переходов.
Вполне естественно предположить, что в начальный этап движения Материи по уровню Д небольшие объединения Г-образований в дальнейшем приобретали все более сложную структурную композицию, включающую первоначальные микросистемы в качестве фщ. единиц и объединяя их в более крупные макросистемы. Фазовое состояние каждой макросистемы уровня Д прежде всего зависит от состояний всех входящих в него микросистем и характеризуется его термодинамической вероятностью. Таким образом, подчиняясь статистике, система стремится перейти в такое макросостояние, которому соответствует большее число вариантов микросостояний.
С ростом числа вариантов повышается вероятность перехода системы в данное состояние и вместе с тем уменьшается упорядоченность в расположении частиц, то есть увеличивается "беспорядок" в системе. Под этим подразумевается расширение набора как скоростей, так и направленности движения (поступательного, колебательного, вращательного) в пространстве фщ. единиц всех подуровней, составляющих систему (молекул, атомов, электронов и т.д.). Указанное отражает стремление Материи в соответствии с законами своего Развития через системные состояния уравновесить свое движение в качестве-пространстве-времени. Поэтому системы, подчиняясь закономерностям развития в трех категориях, стремятся перейти в состояния, обеспечивающие их наибольшую стабильность, однако при этом все большую роль играет степень изолированности (или замкнутости) данной системы, определяющая ее способность учавствовать в создании фщ. единиц более высокого порядка в соответствии с требованиями .
Кроме того, необходимо учитывать, что каждая система уровня Д обладает уже значительным по величине (по сравнению с более низкими уровнями) запасом внутренней энергии, складывающейся из энергии движения, колебания и вращения всех молекул, энергии движения электронов и ядер в атомах, энергии нуклонов, то есть из суммарной энергии всех видов движения всех фщ. единиц нижних уровней, входящих в структуру данной системы. На запас внутренней энергии не влияет положение или перемещение системы в пространстве в качестве фщ. единицы организационного уровня следующего порядка, поэтому кинетическая и, в отдельных случаях, потенциальная энергия системы в целом не являются компонентами ее внутренней энергии, которая зависит только от оргуровня системы, а также от степени ее изолированности.